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MORS To Publish Warfare Modeling
Yale University; Moshe Kress, Center for

W A R FA R E Military Analysis, Israel; and Richard

D O D ELI N G Rosenthal, Naval Postgraduate School.

The book is comprised of seven sections:
JEROME BRACKEN (1) Theater-Level ModelingMOSHE KRESS

RICHARD E ROSENTHAL (2) Mathematical Models of Combat
(3) Historical Analysis
(4) Weapon System Analysis
(5) Command, Control, Communications

and Intelligence
(6) Cost Effectiveness Analysis
(7) Modeling in Support of Operations

Desert Shield and Desert Storm
liWm

The criteria for deciding to undertake this
new offering was for the publication to have

IflCR3 enduring value. Warfare Modeling was
evaluated as having enduring value by a
number of MORS members who read the

As mentioned in the December 1995 articles, by professors who use them as class
PHALANX article "Let's Publish," one reference material, and by the editors of the
objective of the Military Operations publication. Each of the twenty-five chapters
Research Society Publications Committee is represents the state of the art in various
to ensure that publications of enduring value aspects of warfare modeling.
are made available to the MORS member-
ship. Warfare Modeling falls in this category MORS is excited about the opportunity to
and will be available in June 1996. update our members, and their bookshelves,

with current reference material that
Warfare Modeling is a single volume of addresses many dimensions of military

three special issues of Naval Research operations research.
Logistics, An International Journal, along
with a foreword by Wayne Hughes, FS. This Warfare Modeling will be available at the
collection of military operations research 64th Symposium for $35. Please call the
articles, written by experts in their respective MORS office for more details about this
fields, was edited by Jerome Bracken, publication. (703) 751-7290

l Please send me copies of Warfare Modeling. I have enclosed $40 for each copy,
which includes the freight. VA residents include $1.58 sales tax for each copy.

Name:
Address:
City: State: Zip:

Payment must be made in US dollars drawn on a US bank.
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This issue of Military Operations Research represents two changes: it is the first issue
produced by a guest editor and is the last issue to appear under my editorship.

Professor Yupo Chan has done a great job in selecting for publication some of the
papers that were presented at the "Third Mobility Modeling and Simulation Conference." From th
The conference was held at the Air Force Institute of Technology, Wright Patterson AFB, F om t e
25-26 May 1995. All of the papers appearing in this issue of the journal were subjected to a
rigorous reviewing process. I appreciate all of the work that Yupo, his reviewers, and the Editor
authors have put into this project so that the results of the conference could appear in a
timely fashion. I also thank Brig Gen Thomas Case, USAF for providing the foreword to Professor Peter Purdue
this issue.

On 31 December 1995 1 completed my three-year term as editor of Military Operations Naval Postgraduate
Research. My main goal in accepting the position was to provide the military operations School
researcher with a high quality, professional outlet for publishing interesting and significant
work in the field. I believed, and continue to believe, that MORS should publish the
definitive journal in support of the military operations research professional.

In the final analysis, the quality of any journal depends upon the cooperation and sup-
port of the community it serves. The editors and reviewers can establish the criteria that
papers must meet to be accepted for publication, but first and foremost they must have
papers to review. The military OR community has allowed MOR the luxury of setting high
standards by submitting high quality papers for consideration. As a result we have been
able to produce a high quality, interesting and readable journal (Yes, I know that I am
biased but all of the hard work was done by the authors and reviewers.)

My thanks to the whole community for the support I have received in what was for me
a challenging but very delightful project. My only regret is that in my overly zealous desire
to personally read every paper, some papers failed to receive the timely and through
review they deserved. To the authors: my thanks for your patience and apologies for the
delays you had to endure. Many thanks to Michael Cronin of the MORS office for the
superb support he provided ever since he joined the MORS staff. Without his dedicated
efforts to get me to stay somewhere close to schedule, and his excellent work with printers,
we would still be waiting for some of the early issues. I would also like to thank Dick Wiles
and the rest of the MORS staff for supporting the concept of a new journal from the very
beginning. Finally, this whole enterprise would not have gotten off the ground without the
support of the Board of Directors and a couple of MORS presidents who were willing to
take a chance; we all owe them a big vote of thanks!

It has been a fun ride! I wish the new editor, Greg Parnell, all the best and look forward
to an ever improving publication.
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RIST PRIZE CALL FOR PAPERS

MORS offers two prizes for best papers-the Barchi Prize and the Rist Prize. The Rist
Prize will be awarded to the best paper in military operations research submitted in response
to this Call for Papers. The Barchi Prize will be awarded to the best paper from the entire
64th symposium, including Working Groups, Composite Groups, and General Sessions.

David Rist Prize: Papers submitted in response to this call will be eligible for consideration
for the Rist Prize. The committee will select the prize-winning paper from those submitted
and award the prize at the 65th MORSS. If selected, the author(s) will be invited to present
the paper at the 65th MORSS and to prepare it for publication in the MORS journal,
Military Operations Research. The cash prize is $1000. To be considered, the paper must be
mailed to the MORS office and postmarked no later than September 30, 1996. Please send
the original, three copies and the disk.

Richard H. Barchi Prize: Author(s) of those papers selected as the best from their respec-
tive Working Group or Composite Group, and those of the General Sessions at the 64th
MORSS will be invited to submit their paper for consideration for the Barchi Prize. The
committee will select the prize-winning paper from among those presented, nominated and
submitted. The prize will be presented at the 65th MORSS. The cash prize is $1000. To be
considered, the paper must be mailed to the MORS office and postmarked no later than
November 30, 1996. Please send the original, three copies and a disk.

Prize Criteria

The criteria for selection for both prizes are valuable guidelines for presentation and/or sub-
mission of any MORS paper. To be eligible for either award, a paper must, at a minimum:

* Be original and a self-contained contribution to systems analysis or operations research;
" Demonstrate an application of analysis or methodology, either actual or prospective;
" Prove recognizable new insight into the problem or its solution; and
• Not previously been awarded either the Rist Prize or the Barchi Prize (the same paper

may compete for but cannot win both prizes.)

Eligible papers are judged according to the following criteria:

Professional Quality

* Problem definition • Analysis of data and sources
* Citation of related work • Sensitivity of analyses (where appropriate)
* Description of approach • Logical development of analysis and conclusions
" Statement of assumptions - Summary of presentation and results
" Explanation of methodology

Contribution to Military Operations Research

• Importance of problem
" Contribution to insight or solution of the problem
* Power of generality of the result
* Originality and innovation
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This issue of the Military Operations Research journal represents many things. First, it
highlights the level of work being conducted by very talented professionals throughout the
mobility community. It is important in this era of decreasing defense budgets and reduc-
tions in overseas presence that our mobility forces be sized to fit the most demanding but Foreword
realistic future conflict. To do this, the Air Force requires the latest mobility modeling and
problem solving techniques such as those presented in this journal. Second, this special
issue of Military Operations Research subscribes closely to the goals of the journal, to: "estab- Thomas R. Case,
lish channels of communication that link government, industry and academia; and to facil- Brig Gen, USAF
itate the interchange of ideas among practitioners, academics, and policy makers." The
articles in this special issue are only a small, but representative, portion of a wide spectrum Director of Modeling,
of presentations by operational, analytical and academic experts that were presented at the Simulation and Analysis
Third Air Force Mobility M&S Users' Group. Finally, this journal signifies the importance DCS, Plans and Operations
of such bodies as the Air Force Mobility M&S Users' Group. This group brings together
operators, analysts and academia on a regular basis to pursue excellence in mobility
modeling, simulation and analysis. The results have manifested themselves already in the
development of a greater awareness of mobility M&S activities DoD-wide, the acceptance
of a suite of mobility models and the pursuit of future mobility model architectures.

My congratulations to the individuals whose papers were selected for this special issue
of Military Operations Research. The great intellect and capability of these individuals reflect
the character of the entire mobility community. As we transition to a smaller, leaner force,
these mobility modeling, simulation and analytical capabilities will ensure the Air Force
and its sister services make the right decisions for the right reasons.
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63rd MORS Best Symposium Papers-64th Barchi Prize Nominations

WG1- An Improved Solution Methodology for the WG19-The Value of Electronic Warfare: In Search of the
Arsenal Exchange Model (AEM) by Capt Jeffery Magic Metric by Robert J. Meyer, Naval Air
D. Weir, Capt Michael G. Stoecker, and LtCol Warfare Center
James T. Moore, AFIT

WG20-System Understanding and Statistical Uncertainty
WG2- Impact of Theater Ballistic Missile Defense on the Bounds from Limited Test Data by James C.

Joint Campaign by Alan Zimm, Johns Hopkins Spall, JHU/APL
University/APL

WG21-Exploring Unmanned Ground Vehicle Utility
WG3- A Methodology for Evaluating Military Systems in Using Technology Seminar Wargaming by MAJ

Counter Proliferation by Capt Stanley Stafira, Harvey Graf, USAMSAA
Jr., AFSAA/SAG, Dr. Gregory S. Parnell, VCU
and LtCol James T. Moore, AFIT WG22-Do These Costs Make Any Sense? The Use and

Abuse of Costs in Defense Acquisition Analysis by
WG4- The Revolution in Military Affairs: A Primer by Michael W. Smith and Henry L. Eskew, CNA

Barry Watts, Northrop-Grumman, Dr. Andrew
F. Krepinevich, Defense Budget Project Office WG23-Precision Strike Capability/Joint Direct Attack
and Michael Vickers, OSD/NA Munition (JDAM), Product Improvement Program

(PIP), Accuracy Requirements Study by William
WG5- MLR Supplemental Analysis, MV-22 Wargame by V. Beatovich, Veda, Inc., and Maj Jay

Edward A. Smyth, Johns Hopkins Kreighbaum, HQ ACC/DRPW
University/APL

WG24-A Computer Simulation and Analysis of the
WG6- The Nearland Test (NLT) by Dr. Jeff Lutz, CNA Forward Surgical Team by MAJ Robert

representative to JADO/JEZ/ASCIET Syvertson, USA, MSC

WG7- Effects of Tularemia on Human Performance by WG25-The Use of Non-Parametric Statistics in Marine
George Anno, Pacific-Sierra Research Corps Area Assessments by CAPT Gregory K.
Corporation and Arthur P. Deverill, ARES Cohen, USMC, MCCDC
Corporation

WG26-Force Analysis Spreadsheet Tool OOTW
WG9- AMRAAM P31 COEA Results by LtCol Martin Requirements (FASTOR) by LTC Joseph J.

Allen, AFSAA/SAGW and Maj Eileen A. Manzo, US Army CAA
Bjorkman

WG27-Choosing Force Structures: Modeling Interactions
WG1O-We Have Met the Enemy and... by Maj Cyrus among Wartime Requirements, Peacetime Basing

Holliday, HQ FORSCOM Options, and Manpower and Personnel Policies
by Craig Moore, James Kakalik, Deena

WG11-USSOCOM COEA of the Advanced Multi-Mission Benjamin, and Richard Stanton, RAND
Vertical Lift Aircraft (MV-X) by William C. Fite,
ANSER WG28-Contractor Indirect Costs by John Cloos, IDA

WG12-FAADS C3I COEA by Ronald Magee and Frank WG29-Analysis of America's Readiness-Based Aviation
Lawrence, US Army TRADOC Analysis Consolidated Allowance List by Anne J. Hale,
Command CNA

WG13-Optimization of Shipboard Self-Protection ECM WG30-C-17 Paratroop Jump Separation Analysis by
Systems Using SCE Techniques by Prof Phil Pace, Daniel D. Dassow, McDonnell Douglas
LT Michael S. Moreno, B. H. Nishimura, NPS Aerospace
and W. Morris and R. E. Surratt, Naval Research
Lab. WG31-Re-Engineering Legacy Computer Wargames by

CAPT Al Wanski, CADRE
WG14-Naval Theater Level Model (NTLM) by LCDR

Jeffrey Cares, CFC-KOREA, Operations Analysis WG32-The Effects of Decision Making Quality and
Branch Timeliness on the Response Surface of a Simple

Combat Simulation by Dr. John B. Gilmer, Jr.,
WG15-A Bayesian Perspective of Dominant Battlefield Wilkes University

Awareness by COL Raymond E. Franck, Jr.,
Defense Intelligence Agency Composite Group VI-A New Approach for Performing

Cost-Benefit Analysis by John James, Wolf
WG18-Exploring the Relationship Between Tactical Intel Kohn, Sagent Corp., Anil Nerode, Cornell

and Battle Results by Prof Don Barr and CPT University, Benjamin Cummings, Army Research
Todd Sherril, USMA Lab, and Jagdish Chandra, Army Research

Office
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Under the sponsorship of the Air Force Office of Scientific Research (Dr. Neal
Glassman), Air Force Studies and Analysis Agency (Col. Glenn S. Geary, chair), the Air
Mobility Command (Col. Craig Northrop), the Military Applications Section (Dr. Stephen
Balut) and Transportation Science Section (Dr. Hani Mahmassani) of the Institute for Introducti
Operations Research and Management Science (INFORMS), the Third Mobility Modelling I nduin
and Simulation Users' Group Conference was held at the Air Force Institute of Technology
on the 25th and 26th of May 1995, hosted by the Department of Operational Sciences Yupo Chan
(Lt. Col. Paul Auclair), Graduate School of Engineering. One of the foci of the workshop is to Guest Editor & Chair,
uncover emerging operations-research methods in solving air-mobility problems. Conference Facility

I. BACKGROUND Committee
Department of

There has been a perceived chasm between the applications community and the Operational Sciences
research community regarding the ways and means to resolve air-mobility and transporta- Graduate School of
tion problems in general. While there is a need for high-quality analysis to be performed on
a day-to-day basis, the state-of-the-art technologies are often not brought to bear upon the Engineering
problem. At the same time, the research community is equally frustrated about the lack of Air Force Institute of
sophistication in analysis performed on a real-time basis, which prevents important insights Technology
to be gained and timely decisions to be made. It has been said that many of the technological
advances of operations research are at least twenty years ahead of applications. In response
to this problem, the conference is geared toward narrowing the gap between research and
applications by having a meaningful, structured dialogue between the two sides.

The participants strive to integrate mobility issues into existing campaign analysis. This
will bring mobility to the theater level, in which real-time, stochastic events are explicitly
modelled. Also of importance is multimodal transportation systems, wherein lift capacity is
provided by a combination of aircraft, trucks, rail, as well as water-borne vessels. This is in
response to the "new world order", wherein the strategic confrontation between the East
and the West is now replaced by regional conflicts which can flare up at a moment's notice.
Strategic-mobility requirements are now over shadowed by tactical transportation demands.

II. APPLICATION PERSPECTIVE
During the two-day conference, operationally-focused presentations were split between

mobility models and their enhancements, the emerging intra-theater modelling-and-analysis
efforts, and war-gaming. For example, the Air Mobility Command's (AMC) Mobility
Analysis Support Systems (MASS) continues to grow in fidelity and the number of users. An
airlift-loading module has interfaced with the Airlift Flow Module (AFM), the detailed air-
mobility simulation-module in MASS. Graphical user-interfaces are being developed by
AMC to improve export ability and analytical utility. THRUPUT II, Air Force Studies and
Analysis Agency's (AFSAA) quick-turnaround mobility-model, has also been improved. A
time-dimension has been added to this mathematical-optimization model of global-trans-
portation networks to increase its applicability to ongoing and future analysis. The Airlift
Loading Model (ALM) is becoming a desktop windows-oriented analytic-tool with improved
user interfaces and post processors. Efforts are on the way to link a mobility model to a cam-
paign model. For example, the Aeronautical Systems Center is integrating the Generalized
Air Mobility Model (GAMM) and TAC THUNDER, a two sided, theater-level combat-simu-
lation model and war-gaming model. The Users' Group evaluated the Timed Phased Force
Deployment Documents (TPFDD) to determine feasibility within the real-world constraints
of global airfield-infrastructure and aircraft availability. Finally, accurate representation of
airfield capacity remains one of the challenges yet to be conquered.

While there are unique requirements on air mobility (such as air re-fueling), Air-Force
efforts need to be merged with modelling efforts of the Joint Services. For example, the
following three efforts need to be coordinated:

1. Joint Flow And Analysis System For Transportation (JFAST) of the US Transportation
Command (TRANSCOM),
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INTRODUCTION

2. Enhanced Logistics Intra Theater Support Tool (ELIST) of the Military Transportation
Management Command, and

3. Global Deployment Analysis System (GDAS) of the Army Concepts and Analysis
Agency.

Effort such as these which have joint utility need to be integrated. Alternative initiatives to
integrate the efforts include the Analysis of Mobility Platform program of TRANSCOM and
the Joint Analysis Model Improvement Program. Ultimately, these models need to be veri-
fied, validated and accredited by the defense community at large.

While initiatives may be modified and new initiatives may emerge from time to time,
supporting all these efforts is a common database, which is the fundamental, unchanging
element that make or break any integration plan. While efforts such as The Modeling,
Analysis, Simulation and Training Data Base (MASTR DB) are underway in the AFSAA,
much more needs to be done to take care of the eventual integration among the Joint
Services, particularly when two or more models are coupled together. The key is to identify
common data-files and structures across organizational lines, which allow the output of one
model to serve as input to another. There are also the unique features of transportation data
that need to be identified to support anything from campaign analysis to multimodal mobil-
ity requirements, recognizing that there are many aspects of theater tactics, logistics, and
mobility that are interrelated. Eventually, such a database needs to be disseminated among
all interested agencies across the Department of Defense.

III. RESEARCH PERSPECTIVE
From a research stand-point, these are the areas identified for further work:
1. Vehicle routing-and-scheduling,
2. Stochastic facility-location,
3. Terminal operations,
4. Modal-share analysis,
5. Spatial gaming, and
6. Real-time-information systems.
We have included here the many thoughtful comments of the fifty-odd participants in

the conference. The participants span both the operational and research communities. They
represent the Air Force, Army, Navy, national research labs, consulting firms, and universi-
ties. The entire attendee-list is appended for reference, and so is the program of the two-day
conference. It was pointed out that fundamental to all mobility analysis is the movement of
people or cargo on board vehicles-whether they be aircraft, trucks, trains or water-borne
vessels-from origin to destination. This requires the fundamental models of routing-and-
scheduling, particularly the real-time execution of these algorithms. It can be argued that the
final product of any mobility exercise is a schedule that is constantly updated.

Given today's regional conflicts, more and more elements of surprise are embedded into
mobility requirements. With base closures around the globe, there is a more-than-ever
requirement on "global reach." Preposition and routing decisions have to take these stochas-
tic elements into account, giving rise to stochastic facility-location models. The participants
pointed out that in solving vehicle-routing-and-scheduling problems a critical element is
crew scheduling, which has long been glossed over in the suite of mobility models in both
facility-location and routing. Crew-duty-days may be imbedded as a constraint and a crew
may be traced throughout the system in existing models, but there is little crew-scheduling
optimization performed as one sees in the airline industry. There is always trade-off between
approximate versus exact solutions, the use of stochastic network-optimization techniques,
the use of decomposition solution-techniques such as column- and row-generation and set
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INTRODUCTION

partitioning, the issue of integrality-of-the-solution, alternatives to linear and integer pro-
grams (such as the use of heuristics,) hierarchical-decomposition in real-time control, the
inclusion of inventory-control, the use of asymptotic approximation when heuristics are
integrated with analytical models, multicriteria considerations in routing (such as the con-
sideration of both travel-time and risk factors,) and the employment of generalized network-
solver for computational efficiency. Much work remains before the current state-of-research
can meet the needs of the operational community.

The bottleneck of any transportation system is often found in the terminal environment.
An example in the airlift world is the well publicized "max on ground" number, which
determines how much can be ultimately delivered. It so turns out that a terminal's capacity
is determined by several factors that interact in complex, stochastic ways that include the
entire gamut of operating procedures from "metering and spacing" of vehicles to "loading
and off-loading" operations. Terminal operation remains one of the most challenging of
mobility analysis. Mobility models in the past have glossed over the complexity of terminal
operations by using such planning factors as max-on-ground. In practice, terminal capacity
is determined by a number of factors that include both the airside capacity and ground-side
capacity. A fair amount of research has already been accomplished in the civilian and avia-
tion sector. The participants strongly recommend this research be made widely available for
critique and review by the defense analytical-community.

A fundamental tenet of "Jointness" is the recognition that troops and supplies can be
delivered by a combination of modes-air, ground and water-borne-to the theater of oper-
ation. The question then arises-which of the deliveries and how much of them are to be
shipped by air, ground or water-borne transport-or modal-share analysis in short. While
there is a rich repertoire of knowledge in modal-share analysis, recent developments in sup-
ply-chain management place it in a larger framework, including inventory-control consider-
ations. Modes are selected not only on a basis of their levels-of-service, but also their
potential in making just-in-time (or at least ahead of schedule) deliveries so as to minimize
total stockout, storage and transportation cost.

To the extent that campaign analysis needs to be integrated with mobility analysis, we
have to replace the traditional one-dimensional "piston" or "linear" combat models with mod-
els that identify the geographic position of each combat unit. This gives rise to war-games that
explicitly recognize the spatial dimension. The integration of combat models into mobility
models involves spatial gaming, and most of the existing analysis techniques are based on sto-
chastic and deterministic simulations. Recently we have seen the employment of semantic
control, multistage optimization, ordinal optimization, and new paradigms based on real-
time spatial-information in general. Much of the economic theories on oligopolistic competi-
tion (such the Cournot-Nash equilibrium) can potentially be carried over to combat
modelling as long as the spatial dimension can be included (as illustrated in the classic
Hotelling location model.) Voronoi diagrams have been proposed as a technique to solve
such spatial-gaming models.

Finally, the fundamental basic-building-block of all the models is the database, and we
emphasize that such a database has to support not only strategic-mobility decisions, but also
tactical ones on a real-time basis. There are some very unique features of spatial data that are
different than just any database. These features need to be identified and integrated with
modelling requirements. The ultimate application of mobility models hinges upon the
availability of timely information. This is the question of "what do you know" and "when
you know it." With today's Global Positioning System, remote-sensing technology and geo-
graphic-information system, real-time information is not just a fantasy but a reality. The
challenge, however, is to manage the voluminous data that can be collected to support the
modelling efforts and ultimately mobility decisions. In vehicle routing it has been shown
that real-time diversion-strategies based on spatial data is an example of the astute use of
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such an information base. Other examples of the data-based analysis include robust-opti-
mization solvers based on nonanticipativity constraints. Through special data-partitioning,
parallel processing and object-oriented-programming techniques can also be used for real-
time mobility analysis. While the AMC Deployment Analysis System (ADANS) is a step
toward the right directions, much more can be done along this line.

IV. PRELIMINARY RESULTS
With the assistance of the following referees, we are happy to report some research

results in response to the challenges posed above.
1. Jeffrey Camm, University of Cincinnati
2. Mark Daskin, Northwestern University
3. Richard Deckro, Air Force Institute of Technology.
4. Neal Glassman, Air Force Office of Scientific Research
5. Y C Ho, Harvard University
6. Pitu Mirchandani, University of Arizona
7. Warren Powell, Princeton University
8. Morton O'Kelly, Ohio State University
9. David Simchi-Levi, Northwestern University
Included in this special issue are five quality papers. The paper by Busch and Mulvey is

entitled "A Quick Course-Of Action Evaluation Toolkit". The paper provides a powerful
method for optimizing real-time operations. While the methodology may be straight-
forward, the philosophy behind such rapid modelling tools is worth preaching.

Chan, through his paper entitled "Real-Time Information and Transportation
Decisions," introduces the readers to the potentials of future mobility models that are specif-
ically organized around a structured, spatial database. The thesis is that careful linkage be-
tween models and data can provide quick and timely response to tactical-in addition to
strategic-mobility problems on various levels of detail.

Morton et al., in the paper entitled "Optimization Modelling of Airlift Mobility", pro-
vides a linear-programming model for airlift deployment, which is used to address strategic
issues related to fleet size and types, airfield capabilities, and the identification of bottle-
necks. Aggregation was used for computational efficiency, including discretization of the
time axis.

Powell, in his paper entitled "Real Time Control of Logistics," provides a taxonomy and
notional scheme that can be used to represent a large number of real-time logistical-control
problems. It highlights the importance, capabilities and weaknesses of sophisticated
decision-support-systems for solving large-scale resource-management problems.

Yang et al., in their paper "Modeling and Optimization of Mobility Analysis", present a
promising model for developing resource requirements to move cargo to the specific desti-
nation, satisfying a particular desired closure-schedule. Specifically, it solves a pickup/
delivery vehicle-routing-and-scheduling problem with time-window constraints.

V. FUTURE PLANS
Given the richness of these research agendas, it is clear that this special issue is only a

modest beginning for further research in this area. Through the publication of this special
journal issue, it is hoped that we further stimulate the many excellent efforts that have
already started in many quarters of the defense community. The ultimate viability of any
research result is its implementation in the field. The Users' Group discussed the need for
improvements in mobility and logistical play in war-games. In war-gaming exercises, the
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primary contribution has to be made in the crisis-action phases, evaluating the TPFDDs to
determine feasibility, within the real-world constraints, of global airfield infrastructure and
aircraft availability. The next challenge is to incorporate the lessons learned in enhancing
mobility play into future war-games. In a related effort, improvements have to be made in
the mobility and logistic modules in war-game specific models, or to have war-game-
specific models access the requisite information from cooperative, stand-alone mobility and
logistics models. To facilitate future dialogue, a list server has been hosted at the Air Force
Institute of Technology. All participants and invitees of previous Mobility Users Group
Conferences have been put on this server. Anyone else who wishes to be included can e-mail
his/her request to Yupo Chan at YCHAN@AFIT.AEMI
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1995 RIST PAPERS

The Rist and Barchi Prizes will be announced during the opening ceremonies of the 64th

MORS Symposium. This special session provides the opportunity for the prize winners to

present their papers. The Prize Committee Chairs will discuss the selection process and

pertinent points from selected non-winning papers. The following papers were submitted in

response to the 1995 call for papers:

1. Combined Forces Command-Decision Support Modeling, Vol I, II, III, LTC Patrick
Guinnane, USA CAA, MAJ Paul Buhl, USA CAA, Dr. Elizabeth Abbe, USA CAA,

Renee Carlucci, USA CAA, Louise McLean, USA CAA, Richard Poulos, USA CAA,

John De Palma USA CAA, and MAJ Douglas Herr, USA CAA.

2. AMRAAM Upgrade Analysis: The Benefits ofAggressive Model Validation, Maj Eileen

Bjorkman, 846th Test Squadron, Holloman AFB, and LtCol Martin Allen, AFSAA.

3. Evaluating the Effectiveness of Shoot-Look-Shoot Tactics in the Presence of Incomplete

Damage Information, Yossi Aviv Ben Gurion University of the Negrev, and Moshe Kress,
Ben Gurion University of the Negrev.

4. Anti-Armor Advanced Technology Demonstration Experiment, Mark A. Burrough,

USAMSAA, Kent Butler, USAMSAA, Dwayne W. Nuzman, USAMSAA, Floyd C.
Wofford, USAMSAA.

5. De Physica Belli: An Introduction to Lanchestrian Attrition Mechanics, Bruce W.
Fowler, USA Missile Command.

6. Foundations of the Theory of Volley Fire, Robert L. Helmbold, USA CAA.

7. Toward a Paradigm for Validating Man-in-the-Loop Simulations, Maj William C.
Hopkinson and Jose Sepulveda.

8. Optimal Distribution of Army Officers, Maj Doug L. McAllaster, CGSC.

9. A Quick Response Approach to Assessing the Operational Performance of the XM93E1
NBCRS Through the Use of Modeling and Validation Testing, Richard W. McMahon, USA
Research Lab.

10. A New Weapon in the Information War, MAJ David H. Olwell, USMA.

11. Military Force Structure and Realignment "Sharpening the Edge" through Dynamic

Simulation, Stephen R. Parker, USA CAA.

12. Exploring a Relationship Between Tactical Intelligence and Battle Results, Todd E.
Sherrill, USMA, and Donald R. Barr, USMA.
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INTRODUCTION
At the start of a contingency, airlift flow planners have very minimal information on

what is to be transported or what resources are available for utilization. Yet even at that QCOA. A
stage, the planners need the capability to calculate accurate estimates of the efficacy of air Fl. A
mobility transportation. Until the advent of the Quick Course-of-Action (QCOA) Toolkit,
much of those determinations were made without the assistance of a decision support sys- Quick Course-
tem. QCOA has been developed to fill that void as part of the AMC Deployment Analysis
System (ADANS) which provides the Air Mobility Command (AMC) with scheduling of-Act on
and analysis tools to assist them in accomplishing their taskings. Evaluation
CONTINGENCY PLANNING

Contingency operations executed by AMC are unique airlift missions characterized by Toolkit1
rapid evolution, no-notice taskings, varied requirements, shifting priorities, and distant
and diverse operating environments. Routine AMC channel missions have pre-deter-
mined requirements that are supported by established route and support structures. Airlift Ingrid K. Busch
support for JCS exercises is identified and planned months in advance. The time sensitive Center for Transportation
nature of a contingency combined with heightened national and global interest make
contingency planning and execution a challenging and demanding task. Analysis

Contingency operations support situations ranging from humanitarian relief Oak Ridge National
(Somalia, Rwanda, South Florida/Hurricane Andrew), to peacekeeping (Haiti, Bosnia), to Laboratory
the urgent deployment of combat forces to counter a regional threat (VIGILANT
WARRIOR the operation in response to the aggression against Kuwait by Iraq in the Fall Steve Mulvey
of 1994.). With missions this varied, the airlift support structure required to project global Tanker Airlift Control
reach becomes as unique as each contingency.

Contingencies begin in response to events taking place anywhere in the world. The Center
National Command Authorities (NCA) discuss available courses of action with the sup- Air Mobility Command
ported CINC. USTRANSCOM evaluates potential air, land, and sea movement require- Scott AFB, IL
ments. TRANSCOM directs all airlift issues to AMC. AMC forwards all available
information to the Contingency Operations division of the Tanker Airlift Control Center
(TACC). In the first hours of a contingency, when significant political and military deci-
sions are being made, accurate information must be provided in a timely fashion to the
NCA.

Contingency directors are experienced mobility planners who blend years of opera-
tional flying experience with knowledge of worldwide command, control, and airlift mis-
sion planning. The challenge of contingency planning is to optimize the mix of elements
making up a global reach laydown package (Technical Airlift Control Element (TALCE)
support, air refueling requirements, airspace issues, diplomatic clearance restrictions, and
liaisons with supported commands and international relief agencies) in a fly by the seat of
your pants environment.

Technology can assist the contingency director in determining broad theater-to-theater
capabilities and the mobility assets required. This is vital information for the senior leader-
ship that is assessing the courses of action. Present AMC airlift capability models (ADANS
automated scheduler, JFAST, MASS) are excellent tools, but require extensive data input,
and their processing time can be several hours. Clearly, a system that provides quick
estimates of capability can improve the contingency planning process.

The Quick Course-of-Action (QCOA) toolkit provides such a capability. It is a flexible,
easy-to-use system that permits the user to state requirements and solve problems in
many ways. Questions and direction from the senior leadership vary with each contin-
gency. Two recent examples highlight this fact. In July 1994 AMC deployed support to
ease the refugee crisis in and around Rwanda. Contingency planners were directed to
establish a mobility infrastructure that would deliver five C-5 and nine C-141 missions
into Central Africa while supporting any non-governmental agencies operating in the
region. Three months later, while contingency planners were supporting US forces in
Haiti, Iraqi provocations required a deployment of combat forces to the Persian Gulf. The
USCENTCOM requirement was to deliver 2000 short tons of cargo and 2000 passengers to
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the Gulf each day. Contingency planners were tasked to establish a global reach laydown
package for that requirement while ensuring no shortfall of airlift support for forces in Haiti.
QCOA has the ability to quickly provide the broad-based answers no matter how the
requirement has been defined.

The input of data to QCOA is straightforward. The planner needs to enter a movement
requirement, an airlift network and the types of aircraft to be used. If the requirement
includes a date by which it must be in the theater (the closure date), QCOA will determine
the airlift mix required to meet closure. If a closure date is not provided, QCOA calculates
one based on the airlift network and aircraft apportionment. Additionally, it calculates how
many air refueling tankers and airlift crews will be required to sustain the air refueling
based airlift. The contingency director provides the network, which is often determined by
considering such factors as flight times, diplomatic clearances, air refueling tracks, and en
route support bases. With only minimal information, QCOA can quickly analyze various
networks comparing closure, required airlift aircraft, tankers, and crews.

ADANS
ADANS is a scheduling and analysis system that is being developed for AMC by the

Oak Ridge National Laboratory. The goal of ADANS is to integrate planning and scheduling
for both peacetime and wartime operations. As such, ADANS is utilized by AMC organiza-
tions which have diverse tasks.

The component of ADANS that deals with the subject of this paper is the planning com-
ponent, which provides scheduling and analysis capability for the deliberate and execution
planning communities of AMC. Deliberate planners are tasked with the evaluation of large-
scale operations plans to determine whether they are transportation-feasible. Execution
planners direct airlift exercises as well as plan the airlift for real-world contingencies.

The planning component of ADANS provides planners with a number of scheduling
tools, each appropriate for a particular task in terms of the detail that is needed and the type
of scheduling that is being done. (See Figure 1.) An automated scheduler is used by the
deliberate planners to produce a set of missions for a plan of operations. The information
that is needed to run the automated scheduler is quite extensive. The cargo and passenger
requirements that are to be moved are input electronically; a large plan may contain several
thousand individual requirements. The planner needs to indicate what types of planes can
be used to transport these requirements, and in what configurations these planes may fly.
He also needs to build a network which comprises the routes over which the planes can fly
and to indicate (through the setting of permissions) where planes are allowed to onload,
offload, en route, and refuel, and where crews are allowed to rest or be exchanged. After the
plan has been set up, a run of the automated scheduler produces a set of routings and sched-
ules for the aircraft. ADANS provides textual and graphical tools and printed reports to
assist the planner in evaluating the schedule that was produced. He may then modify the
setup and rerun the scheduler until the plan has been scheduled satisfactorily. Depending on
the size of the plan, a run of the scheduler may finish in a few minutes or it may take an
hour or longer, making the process of iteratively rerunning the automated scheduler time-
consuming.

When an exercise or contingency is being executed, planners require the capability to
specify exactly how the mission is to fly The requirement to be moved and the routing and
schedule to be followed are known a priori. ADANS contains a mission editor that allows the
planners to type in this information, and store it in the database. After coordination of the
mission has been completed, the planner will transmit the detailed mission information to
AMC's command and control system, the Global Decision Support System (GDSS).
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ADANS Contains a Range of
Mobility Scheduling Tools

t.I 4Mission Editor

Automated Scheduler

= Course of Action Tools

Planning Execution
Type of scheduling

However, when the possibility of a contingency first arises, many of the details of the
scenario may not be known. For example, the specific onload and offload stations may not
be known, though the countries of origin and destination likely are. Which planes will be
available for the contingency may not be known, though a planner may be told that he
would have access to, say, 20 C-141's to fly in the contingency. The en route stations may not
be known either, though in most cases, direct flight from onload to offload will not be possi-
ble, so the use of en routes and possibly air refueling locations would then be necessary. In
short, the fuzziness of the scenario when it first is proposed reduces the effectiveness of the
ADANS automated scheduler in evaluating the airlift capability available. Forcing such a
tentative scenario into the automated scheduler would require the planner to make deci-
sions to dictate details of the scenario that were not known, in most cases placing on the
problem constraints that did not actually exist.

By providing tools that allow planners to model scenarios at the level of detail of the
data that is available to them at the outset of a contingency, QCOA completes the set of
ADANS planning and scheduling tools. Planners now have, within one seamless system,
scheduling tools that take them from deliberate planning to contingency planning to
contingency execution.

QCOA INTERFACE
QCOA offers the planner access to the model via a graphical user interface, which relies

on the mouse for input and graphical output as much as possible.
The requirements screen offers the planner the ability to work with the data at two lev-

els of detail. In the limited mode, requirement data is limited to the onload and offload sta-
tion and the amount of cargo and number of passengers to be moved. In case the onload and
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offload stations are not known, notional stations may be used in their stead. When require-
ment data is input in the limited mode, the assumption made by the model is that the cargo
is of the oversize cargo class, and that the requirement will need to be delivered to the
offload on the first day of the scenario. If these assumptions do not adequately model the
scenario, the planner has the ability to switch to the more detailed level of data display and
modify the information.

The aircraft screen allows the planner to specify the types of aircraft that will be avail-
able for utilization in the scenario. The allocation of aircraft is indicated by the manipulation
of a graph which indicates by day how many individual planes of a specific aircraft type are
available for use. A configuration screen is also available which allows the planner to specify
in what configurations an aircraft type may fly, and how many passengers and how much
and what classes of cargo a configuration can carry. All configuration information, as well as
the default configuration for an aircraft type, is pulled in from the database.

The path screen allows the planner to indicate what paths should be used to fly from an
onload to an offload, and which aircraft are allowed on individual paths. The model will cal-
culate the flying times along the path; the planner is allowed to edit these values, as well as
the ground times at the stations. Additionally on this screen, the planner can indicate where
a crew change or crew rest will take place.

THE QCOA MODELS
QCOA makes a number of assumptions in order to make the solution of the models

tractable. The first is that the en route capability of a station is modeled as a single constraint.
This constraint aggregates a myriad of resources that are required at an en route station,
such as ramp space and fueling equipment. The combination of all of these resources is
termed "parking." As resources are generally consumed at a rate that is proportional to the
size of the aircraft, such an aggregation provides a good approximation to the en route capa-
bility of a station without requiring the planner to provide detailed information. For each
station, the planner specifies the instantaneous parking capability of the station, as well as
the amount of parking that would be required by a narrow- and by a wide-body aircraft.
These data are used to construct the en route constraints in the model. For example, if a sta-
tion were open for 12 hours per day, and the parking at the station were rated as 10 parking
spaces, the daily parking capability of that station would be 120 parking hours. If a narrow-
body plane were to take 1 parking space and require a 2 hour stop, that would be a utiliza-
tion of 2 parking hours. On the other hand, if a wide-body plane were to take 2 parking
spaces and be on the ground for 3 hours, that would be a utilization of 6 parking hours.

Another assumption is that an estimate need not have as fine a scheduling granularity
as a scheduling algorithm provides. The time periods in QCOA may be adjusted to a range
of settings from 1 hour to 24 hours. Using a 24 hour time period decreases the run time of
the estimate, but a 1 hour time period improves its accuracy.

To streamline the exposition of the models, statement of the formulation is deferred to
the appendix. However, presentation of the variables utilized in QCOA will clarify the
concepts involved in the discussions of the models that follow.

QCOA makes use of four classes of variables. The variable x.cpk t will indicate the number
of aircraft of configuration k that fly along path p carrying cargo class c of onload/offload pair
I arriving at the offload at time t, where c is a preferred cargo class for configuration k (i.e., is a
cargo class for a cargo configuration or a passenger class for a passenger configuration).

Nearly similar to xcpk the variable ycpk s the number of aircraft of configuration k that
fly along path p carrying cargo class c of onload/offload pair I arriving at the offload at time
t, where c is not a preferred cargo class for configuration k (i.e., is a passenger class for a
cargo configuration or a cargo class for a passenger configuration).
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Note that the difference between the x and y variables is that the x variables correspond
to the preferred class for an aircraft configuration. Oftentimes, a cargo configured aircraft
can also carry passengers, and utilizing this capability is essential to an efficient airlift.
However, the accompanying passengers will not be flown without sufficient cargo to justify
the flight. Hence, QCOA treats accompanying passengers on cargo configured aircraft (and
similarly, accompanying cargo on passenger configured aircraft) with a separate set of
variables.

The variable zict will indicate the total amount of shortfall that has occurred for cargo
class c of onload/offload pair I by time t.

Finally, w,, will indicate the number of aircraft of type m needed in the scenario. (This
variable is only used in the models that are to determine the number of aircraft needed. In
all other models, the number of available aircraft is specified by the planner.)

ESTIMATE OF A SCHEDULE
QCOA allows the planner to estimate the schedule that would be produced by the

ADANS automated scheduler. The objective for this linear program weights the shortfall
variables heavily The movement variables x.cpk- are assigned weights according to the t
parameter, so that early movement of cargo and passengers is encouraged.

There are constraints in this estimate to ensure that requirements are not moved before
they are available, and that each requirement reaches its destination on or before its latest
allowed arrival date. To decrease the size of the linear program that is to be solved, these
requirement constraints are based on the onload/offload pair and the cargo class (i.e., out-
size, oversize, bulk, passenger), not on the individual requirement. These constraints
guarantee that all requirements are accounted for, either as deliveries or as shortfall.

Other constraints in the model require that the number of planes that are utilized on any
particular day does not exceed the number that have been allocated by the planner. The en
route capability of a station is modeled with a single constraint as described above, and a
thruput constraint limits the amount of cargo handling (i.e., onloading and offloading) that
can be done at a station on a day.

Finally, there is a set of logical constraints that serve to ensure that there is a sufficient
amount of cargo to justify the accompanying passengers (or, in the case of a passenger
configured aircraft, sufficient numbers of passengers to support the accompanying cargo). A
formal presentation of this model is provided in the appendix.

While each movement requirement in an operation plan has a date by which it must be
delivered to its destination, it is often not possible to meet all of these demands on time.
QCOA provides the planner with the ability to determine the effect of allowing this latest
delivery date to be violated. This is accomplished in two ways. In the first, the planner can
iteratively solve the model, where in each iteration the latest delivery date of each require-
ment is increased by another day. In the second, the planner can ask QCOA to determine the
minimum date of last delivery (known as closure of the plan). It may be that a plan will
never close. This would happen, for example, if there were a requirement in the scenario for
which no suitable plane were available. In that case, QCOA would provide the last delivery
date of the requirements that could be delivered.

ESTIMATE OF AIRCRAFT NEEDED
The aircraft estimate minimizes the number of planes that are needed to deliver the

requirements, taking into account the fact that a plane can fly several missions over the
course of the scenario. For this estimate, the planner specifies the movement requirements
and the types of aircraft that could be utilized, as well as their possible configurations.

Performing this estimate involves solving two linear programs. In the first, the model
determines how much of the requirements can be delivered, with no limitations on the
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number of planes used. The objective of this linear program is to minimize the shortfall.
There are requirement constraints as in the schedule estimation problem, and the en route
and thruput constraints are added at the discretion of the planner. He may elect to ignore
these constraints if he believes that the necessary support at the stations in the network will
be provided, or he may simply not know what the support will be and does not want to
impose artificial constraints on the system. Finally, the logical constraints are also imposed
here, as accompanying passengers and accompanying cargo often play an important role in
determining the best mix of planes in the fleet. In the second linear program, the shortfall is
fixed from the solution of the first linear program. The objective is now a weighted function
of the number of planes needed in the scenario, with the weights characterized by the type
of the aircraft. The constraints are as in the first linear program, with additional constraints
that determine the number of each type of aircraft that will be needed.

QCOA also provides another estimate, that of determining the minimum number of
planes needed to support a constant delivery rate. Solving this estimate is similar to that
above, though the time element is taken away: the requirement amounts for each
onload/offload pair are entered as a daily delivery amount. The set of requirement
constraints is replaced with a single constraint for each onload/offload pair and cargo class.

ESTIMATE OF NETWORK CAPABILITY
The final set of estimates available in QCOA allows the planner to determine the capa-

bility of the network. Oftentimes it is the limitations imposed by the en route stations, the air
refueling tracks, and the offload stations that will constrain the airlift flow. Obtaining quick
determinations of these limitations provides the planners with the information needed to
move equipment and manpower into the key points of the network to circumvent these
bottlenecks.

The estimate of network capability determines the maximum average daily amount that
can be delivered to the theater. As such, no requirements are entered by the planner, but he
must indicate which onload/offload pairs are to be considered. He also indicates the types
of aircraft that are to be considered for flying, and the configurations in which they are
allowed to fly. Finally, and perhaps most importantly for this estimate, he specifies the paths
over which the planes are to fly, the en route and thruput capabilities of the stations, and the
separation time that is required on the air refueling tracks. There is also a mechanism by
which the planner can direct the model to give preferential treatment to passengers or to
cargo.

The objective of this model is to maximize the amount that is delivered. As there are no
actual movement requirements involved in this estimate, there are no requirement con-
straints. The en route and thruput constraints are included in the linear program, as are con-
straints to ensure that a minimum separation time is enforced on the air refueling tracks. The
planner has the option of adding plane availability constraints if he so chooses. The logical
constraints that control the relationship between the cargo and accompanying passengers
(or the passengers and accompanying cargo) are also included; although the planner's main
question in this case is likely that of how much of the cargo can be delivered on an average
day, knowing the number of "free seats" that are available is valuable information as well.

SOLUTION OF THE MODELS
The models described above are solved through the use of the CPLEX linear program-

ming package. The planner runs QCOA locally on a Sun workstation. When he asks for an
estimate, QCOA writes the MPS file to the disk and calls the CPLEX solver on another Sun
processor. When that processor has arrived at the solution, the local workstation displays the
solution.
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SUMMARY
QCOA includes a number of models, each one looking at a different view of contin-

gency airlift. This is necessary, since every contingency is slightly different in terms of the
information that is known, and the objective of the use of airlift in the operation plan. This
flexibility, as well as its speed and easy-to-read graphical display of networks, cargo deliv-
ery, and airlift missions required is what makes QCOA valuable to the planners. Many times
in recent months the TACC commander has tasked the contingency cell to provide options
and capabilities for real-world what if situations. Within minutes this accurate information is
in the hands of the AMC vice commander and CINCTRANS.

APPENDIX
Presented below is the formulation that is used by the QCOA model in estimating a

schedule. This first requires the specification of data.
There are data corresponding to the requirements. The possible classes of a requirement

are bulk, oversize, outsize, passenger, and litter; a requirement may include more than one class.
C1  = [outsize, oversize, bulk).
C2  = [pax, litter.
sc  = the amount of class c in requirement s.
Sic = Is I requirements is associated with onload/offload pair i and sc >01.
ead(s) = the earliest delivery date for requirement s.
lad(s) = the latest delivery date for requirement s.
EADic = {ead(s) I s ESic)
LADic = {lad(s) I s E Si}.

T = max 4.
t eL4D,

q,: t S,

t < t, s 6S_ ead(s) = t'

= S.
t" s e S_. lad(s) = r'

That is, qict is the amount of cargo class c associated with onload/offload pair i that is
available to be delivered before time t, and rict is the amount of cargo class c associated with
onload/offload pair i that must be delivered by time t.

There are data corresponding to the aircraft:
Mm = (k I k is an allowed configuration for aircraft type m}.
K = (k I k is a cargo configuration).
K2  = [k I k is a passenger configuration).

Pmt = the number of aircraft of type m available on day t.

'pk = the amount of cargo that a plane of configuration k can carry on path p.

pk = the number of passengers that a plane of configuration k can carry on path p.

There are data corresponding to the stations:
en  = the parking capacity of station n.

bn  = the cargo handling capability of station n.
bn'  = the passenger handling capability of station n.

PAnk = the number of parking hours required by a plane of configuration k at station n.
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Finally, there are data corresponding to the paths:
N p = {n I station n is on path p}.
apk = the amount of time for a plane of configuration k to reach the onload along path p.

pk= the amount of time for a plane of configuration k to reach the offload along path p.
T'pk the amount of time for a plane of configuration k to traverse path p.

On k = the amount of time for a plane of configuration k to reach station n along path p.

Pic =the penalty for shortfall of class c of onload/offload pair i with LAD of t.

Mnimize Y .o' xl' + Y p.,' z'
ic'p'kt i,c,t

subject to

Y ypx,+y' + Y + y, zp" q' VteEAD Vi,cE C, (1.1)
k eK, p, e!5t k 6K, p, t'! i t '.it

F YrX,' + Y -yyxk" + Y zi qc' VteEAD Vi, ceC 2  (1.2)
k eK, p, t..< t kcKp, t'5 r t '< t

Y_ yx, ' + Y ypky)" + Y zc" rt Vt eLAD,oVi,ce C, (1.3)
keK,.p,:t kEKp,t' 1 I' t

E ypk " + E ypycpk" + E z,," > r' Vt eLAD,,Vi,c C2  (1.4)
k K,, e5 t keK,p, t'!5 t t! t

YpkX,,pk
' + Y YpkY cpk' + Y z, = r' t=T Vi, E C, (1.5)

keK ,,p, t' t keKTp, t'V5 1 6 t'(

_ ypk,,cxpk + E y7y,," + Y zcf = ro' t=T, Vi, cc C (1.6)
k eK,p, t : kcK,p, t' i t t' gt

E x k p.t V m, t (1.7)
,,c,p,kE M,,,,f t + fi,- r, t' + fit

- a *' e.' Vn, t (1.8)

4~c,p.k

t

I4CcI1 P'k6K1  4eCC2.pke 2

Y Vk x , . E Y b ' Vn, t (1.9)
Y IkCPk Y pk~q

4'CECIpk 1  i-CcC2'Pk~t2

I-cCC2-p,kFr2  cClpkEt1

,CEC.ker 2  IceC1J',,k

Y-xl Y_ Ey, V i, p, k, t (I. 11)
C C
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Constraints (1.1) and (1.2) ensure that the delivery of the requirements associated with
an onload/offload pair does not exceed the amount eligible for delivery. Constraints (1.3)
and (1.4) require that the delivery of the requirements associated with an onload/offload
pair does not fall behind the latest arrival date curve. This is accomplished by assigning the
shortfall to the z variables when necessary. Constraints (1.5) and (1.6) guarantee that all
delivery requirements have been either delivered or assigned to the shortfall variables.

Constraints (1.7) limit the number of planes that are flying at a particular time t to not
exceed the number of aircraft that have been allocated for that time. Constraints (1.8) control
the en route capability of the stations. Constraints (1.9) and (1.10) limit the thruput of
cargo and passengers, respectively at the stations. Constraints (1.11) enforce the logical
relationships between the x and y variables.

This is the linear program that is solved when the planner requests an estimate of the
schedule. The other models are solved via linear programs that are based on this same for-
mulation. Those models, naturally, have alternate objective functions and a variation of the
stated constraint set. However, the basic structure remains the same, which allows QCOA to
make use of a previously solved problem to develop the starting basis for a subsequent
solution of the current linear program.

ENDNOTES
1 Submitted June 1995; In final form July 1995.
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I. ABSTRACT
Critical to making timely transportation decisions is current information. This paper

differs from other information-system discussions in several ways. First, we include Real
remote-sensing technology such as satellite-image processing. It is felt that oftentimes such -Til-Time
a data-gathering procedure has not been adequately examined. For example, current tech- Information and
nology allows very inexpensive roof-top antennas to collect real-time satellite-sensing data.
A second focus of this paper is on the application of Geographic Information System (GIS)
toward transportation analysis. This bridges the gap between data availability and model- Transportation
ling-a gap that has long existed but little has been done about it. A third emphasis, judged
to be the most important one, is on applications. Oftentimes remote sensing and GIS are Decisions:
viewed as gadgets rather than as means toward analysis. For this reason, remote sensing
and GIS have not been fully exploited as a tool for more innovative real-time decisions. An Analysis of
Illustrative applications, particularly built upon the marriage between data and modelling,
will be highlighted. These applications range from transport scheduling-routing, resource
management to contingency-facility location. They show that when data are properly orga-

nized and algorithms are tailored toward the database, sophisticated transportation analy-
sis can be performed in a tactical-in addition to a strategic-environment. The purpose of
this paper is to review the relationship between remote sensing GIS and transportation Yupo Chan
modeling efforts using such an information base. Professor, Department of

Operational Sciences, Air
II. INTRODUCTION Force Institute of

Technology
It is clear that one of the most demanding parts of any transportation analysis is the

collection of data. In urban-transportation applications, for example, the resource require-
ment for data assembly is any where from 30 to 50 percent of the study. Furthermore, data
usually come from a diversity of sources. Population and employment data-the driving
force behind urban travel-are compiled usually on a census tract, while educational infor-
mation are compiled by school districts. These geographic subunits are different, making
the merging of data particularly difficult. Geographic information systems (GIS) allow a
much more consistent format for the assembly of such data. In addition, a GIS typically
relies on land-use information consisting of survey data supplemented by aerial photo-
graphs, which greatly enrich the database. In American urban applications, there is a
Standard Land Use Coding Manual promulgated by the U.S. Department of Housing and
Urban Development that provides guidelines for the preparation of such database. Recent
standardization includes Topologically Integrated Geographic Encoding and Referencing
(TIGER) files of the U.S. Census Bureau and spatial-data-transfer standard promulgated
by the U.S. Department of Transportation. Increasingly, GIS also capitalizes on the recent
introduction of satellite raster or pixelized imagery, which rivals and in some cases
exceeds the fidelity and format of aerial photos. The reliance upon a systematic database
becomes increasingly critical in logistical applications. Industries rely more and more
heavily upon satellites to track their moving assets such as trains and trucks. In mitigating
the ill effects of natural and manmade disasters, evacuation of population from disaster
sites is of paramount importance. Remote sensing offers a means to predict such disasters
as hurricanes and earthquakes.

In the military, the post cold-war era introduces a new challenge in resolving regional
conflicts which can arise within a moment's notice. Instead of a "linear" or "piston" model
today's combat models call for tactical decisions to be made on a real-time basis. Similarly,
strategic east-west nuclear exchange gives way to surgical actions in redressing regional
confrontations. These decisions often involve spatial attributes such as the whereabouts of
a tank, an aircraft and troop movements. Most importantly, the question arises as to how
to re-supply these combat units on a real-time basis. Today's information technology pro-
vides the platform for such timely decision to be made. It is the intent of this paper to out-
line some of the ways to make this happen even more rapidly and more effectively than it
has been, and to remove some of the road blocks that have proven to be insurmountable
thus far. Database to support timely transportation-analysis has indeed come of age.
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III. OBJECTIVES
Technology transfer is a often an overworked term, suggesting the tremendous bene-

fits of sharing know-how among various segments of society. We have heard of the trans-
fer of our cutting-edge knowledge in aerospace and defense toward civilian use. Our
contention is that cross fertilization works both ways. In transportation science, the
advances in industry and the civilian sector in general have been truly amazing over the
last few decades. With the tremendous investment in this field by large corporations and
federal agencies such as the U.S. Department of Transportation, the state-of-the-art is cer-
tainly way ahead of real-world applications. Fortunately, the transportation problems we
try to solve are often common among both the defense and civilian communities, which
paves the ground for two-way transfers. For example, both seek a closer tie between
strategic and tactical decisions. In the civilian sector, the planning studies of the 1960's
have given way to "Intelligent Transportation Systems" which seek to monitor and con-
trol anywhere from urban-travel congestion to commercial-vehicle operations. Similarly,
the defense community, in the post-Cold-War era, is facing regional conflicts that require
not only advanced multimodal lift strategies, but also theater-level tactics. Both can bene-
fit significantly from the availability of real-time information and analysis procedures
that can be executed as events unfold.

To reiterate, the purpose of this paper is to review the relationship between remote-
sensing, GIS, and transportation-modelling efforts using such an information base. We
illustrate the analysis process starting from data collection via satellite. This includes geo-
metric correction (from different viewing angles of sensors) and radiometric enhancement
due to differences in sensor instrumentation. If we are looking at land cover, for example, the
boundaries of lakes, forests, man-made objects, and ocean need to be delineated once correc-
tion and enhancement are accomplished. Then these land-cover data are to be integrated
with other ancillary data such as those gathered from the census or other sources of intelli-
gence. The ultimate use of data is obviously problem solving. We will round out our discus-
sion here in this paper by pointing out how the GIS database can support modelling efforts
such as transportation analysis, analysis that rely heavily on spatial data. This is, in the
author's opinion, the most interesting part of the paper (Marble and Peuquet 1988). The
focus is really on the relationship between data collection, organization and problem solving.
Within the limited space available, we wish to illustrate the integration that is possible
between these three areas.

Recent effort by Kwan and Golledge (1995), for example, show how a GIS can be used to
calibrate a computational-process model for activity scheduling. Psaraftis (forthcoming)
points out that computer-based technologies, including GIS, have significantly enhanced
dynamic routing and opened interesting direction for research. The impetus is further acceler-
ated by the introduction of Global Position Systems (GPS) as afforded by geosynchronized
satellite constellations, not to say electronic data-interchanges as afforded by the Internet. All
things considered, the integration effort is really at its infancy While a fair amount is known
about data collection and organization, little is available regarding the interface between data-
base and model-solution algorithms. Most modellers tend to assume data are available to
support the analysis. Likewise, most data-collectors also take the attitude of comprehensive-
ness, or the collection of any pieces of information available irrespective of their relevancy
The result is that models become increasingly more sophisticated, often with a zealous
appetite for data-data that may not be available. At the other end, reams and reams of data
may be downloaded from satellites and stored away, with no real prospects that any but a
minute fraction of them would ever be used (if at all). Sophisticated models are not only
data-hungry, they are equally demanding on execution time. Thus vehicle-routing models
may take days to execute on the latest computer, while logistical decisions are eagerly

Page 24 Military Operations Research, Winter 1996



REAL-TIME INFORMATION

waiting to be made in the field. This does not even include the time required to assemble the
data required for meaningful model application in the first place!

It is our contention that relevant data need to be collected in a format directly amenable
to model application. Notice this is not a trivial task. To the extent that the repertoire of
models have been developed with the mindset that data are available to support its execu-
tion, a new paradigm needs need to be constructed that truly configure models around the
available databases. A simple example may make this clear. Recently, operations research
(OR) models have been coded on a spreadsheet. For the first time, a database tool such as
the spreadsheet has been integrated with model construction. What is more gratifying is that
oftentimes, the execution speeds of these spreadsheet-based algorithms rivals (and in some
cases exceed) the conventional algebraic ones. This is the tip of an iceberg that will blossom
into its full potential if conscientious effort is made to remove some of the major obstacles.
To the extent that GIS is the "spreadsheet" for transportation analysis, we argue that there
should be more integration between the two sides-much as the synergy that has taken
place between spreadsheet and OR models.

IV. GEOGRAPHIC INFORMATION SYSTEM
The advantages of GIS are well known. They include the ability to integrate layers of

spatially oriented data through a variety of analytical approaches. An advantage of GIS is
that the data can be easily retrieved, and it allows for the interaction between facility loca-
tion, land-use, and transportation analysis. For example, the implication of siting a haz-
ardous facility in terms of environmental impacts among surrounding land, including the
transportation of hazardous materials to and from the site, can be easily assessed using GIS.
In emergency management, the evacuation of civilian population in the event of manmade
or natural hazards can also be facilitated by the timely availability of data. Another advan-
tage of GIS is that a large amount of data can be processed rather quickly. The process of
automation allows scale and projection changes to be readily performed. Image distortions
can be easily removed and coordinate rotation and translation is at the push of a key In
summary GIS (including remote sensing) allows for the ready application of empirical and
quantitative models.

An early GIS based on remote-sensing data is the Image Based Information System
(IBIS) of the Jet Propulsion Laboratory. Most data in this system are in raster or image-based
format, complimented by ancillary and tabular information. GIS needs accurate update of
the various spatial-data elements, and remote-sensing systems provide precise ground data
on a most timely basis for updating purposes. An illustration of IBIS is shown in Figure 1,
where the typical "pancake stack" configuration contains a planimetric base, a geo-reference
plane, land-cover data, and other image-based data. It should be noted that the planimetric
base usually comes from a LANDSAT imagery and the geo-reference plane comes from
(say) census-tract maps. Both of these serve as reference mats for other layers of data. To
show how other data can be referenced against these mats, we illustrate with an interface file
in Figure 1, consisting of a district name, the number of image elements (pixels) within that
district, and the grey values of these pixels. Such an interface file can also provide an accu-
rate accounting of (say) census information such as population and employment density
Most of us have seen examples of an IBIS-like GIS. Weather channels on television often
show an image from weather satellites, with an overlay of the state and national boundaries.
In this example, the pixel based clouds and land cover illustrates the planimetric base, while
the state and national boundaries illustrate the geo-reference plane. Obviously, there are
more sophisticated applications beyond the "pancake stack" illustrations. Recent advances
in relational databases and object-oriented programming have greatly expanded our ability
to "fuse" diverse number of formats together for various applications.
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23 P__________________
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Figure 1-Formation of an IBIS data base (Adapted from Marble and Peuquet [19881)

As mentioned, the ultimate use of a GIS is for problem solving. Depicted in Figure 2 is a
good example of how data can be merged to show useful information. Consider a raster-
based GIS in which two of the files indicate the slope and the soil conditions of an area.
Through a look-up table, trafficability information can be shown based on the combination
of slope and soil conditions. For example, when the ground is level and the soil condition is
rocky, it provides easy passage. On the other hand, steep slope combined with clay soil
makes it hard to traverse. An output raster file can thus be produced from the two input
raster files showing the trafficability of the land. One would agree that this output informa-
tion-often accomplished through a mathematical model-satisfies those who wish to travel
among this area, who can make informed travel decisions based on Figure 2(c).
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Slone Soils
Rock

Steep
7 Sand

M o e a e L evel 7t 
C l -ay

Sloe oil Type Rock Sand Clay

Level Easy Easy Easy(b)
Moderate Easy Hard Fair

Steep Fair Hard Hard

Fair Eas

Hard(c)EayEs

Figure 2-"Manipulation and analysis (Star and Estes 1990)"

The raster format is not the only way of storing geographic information. Vector and rela-
tional databases are two other very common formats. Shown in Figure 3 are two layers of
information, consisting of geographic districts in the first layer and highway network on the
second. One can see how geographic districts, represented as polygons, can be encoded by a
chain list. For example, area A is bounded by a ring consisting of arc 1 and arc 2. At the same
time, the relationship between arc I and other districts can be shown in an accompanying
table where area B is indicated to be on the right-hand side in addition to area A being on its
left-hand side. Furthermore, the highway network can be encoded in reference to the district
map by virtue of the x-y coordinates. Thus any information base can and are often represent-
ed by a combination of vector, relational, and raster formats. A vector format is often more
efficient in terms of storage space, while the raster format is more amenable to data merging
among diverse databases.

To show the tremendous potential of GIS in problem solving, we cite a facility-location
example due to Densham and Rushton (1992), who reported that the processing costs for
algorithms can be drastically reduced by exploiting spatial structure. They follow a strategy
in which the interpoint-distance data were preprocessed as both site-candidate and trans-
portation-demand strings. These strings are then used to update an allocation table between
sites and demands. The result is the ability to solve large problems of up to 3,000 nodes on a
personal computer. Most importantly, solution time is a linear function of a problem size
[O(n)], meaning that the execution speed is in the order of the number of nodes n. This is
particularly exciting considering the non-deterministic computational complexity (or the
exponential time of algorithmic execution) of most location problems. The speed with which
the Densham-and-Rushton algorithm executes has direct bearing upon tactical application
such as prepositioning supply depots in an emergency-relief operation or a wartime conflict.
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Geographica
districts 1 3

d

Highways h/

Geographic districts - Polygons

Area ID Ring (chain list)*
A -1, 2
B 3, 1

Geographic district - boundary chains
Boundary chain ID From node To node Left area ID Right area ID x-y coordinate

1 b a A B x1 Y1 ... x. yn
2 b a C A x1 Y1 ... xn Yn
3 a b C B XirY ... x. Yn

Highway Network chains
Network chain ID From node To node x-y coordinates

4 i d xi Y1 ... xn Yn
5 i e x1 Y1 ...'xn y.
6 i f x1 yl ... xn Yn
7 i gx1 Y1 ... x, Y
8 i h x1 YI ... X, Yn
9 i c xI Y1 ... x, Y.

* Negative entries indicate reverse order

Figure 3-Chain and Polygon data records for GIS (Nyerges and Dueker 1988)
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A. Location example. Consider the problem of locating p facilities or finding the p-medians,
where p = 1, 2,.... In this case they are to be placed in the continuous plane (rather than at dis-
crete locations in a network). We assume that travel occurs according to the rectilinear metric in
the presence of impenetrable barrier to travel (Larson and Sadiq 1983), meaning that travel can
only take place in the east-west and north-south directions and in avoidance of such intravers-
able regions as a lake. The number of demand points is finite and that the demands are pro-
portional to the share of total population. Figure 4 shows an example of a case with three
equally weighted demand-points and one diamond-shape barrier. The objective is that one
wishes to locate p facilities in a manner that minimizes the average travel-distance to all ran-
dom demands, assuming that each demand is served by its closest facility and that facilities
are always available to service demands. Such a problem arises in a number of contexts,
including the location of obnoxious facilities in an urban area and the associated routing of
hazardous materials around the population, which defines the "barrier" region to travel.

Legend
0 Demand nodes with equal weights

E Optimal locations

Figure 4-Ilustrating Larson and Sadiq's model (Ding et al. 1994)

An optimal selection of facility locations can be drawn from a finite set of easily iden-
tifiable candidate points. This set of points is determined by drawing grid lines-lines
parallel to the two travel directions through each demand point and lines tangent to the
barrier boundaries in the two rectilinear travel-directions, with all lines terminated when
intersecting a barrier. Intersection points of grid lines and demand nodes themselves pro-
vide the candidate locations. We note that the actual number of candidate locations
depends upon the number and shapes of the barriers and the location of demand points
relative to the barriers. However, the number is finite and typically not too much larger
than the square of the number of demand points. Returning to the example, the 1-median
objective-or locating the most proximal facility-if evaluated at each candidate point
gives point B as the optimal solution. We note that this is a different location than the
median solution if the barrier is assumed to be absent in which case point A will be
selected. Because of the obviously geometric nature of this algorithm, it can be verified
that this model can be easily implemented in a GIS (Ding et al. 1994).
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B. Location-routing example. Another example of GIS application is drawn from loca-
tion-routing applications, in which a facility is located in explicit consideration of the
access and egress routing. Many of us know that location-routing analysis can be per-
formed readily by Space Filling Curves (Bartholdi and Platzman 1988). Shown in Figure 5
is a three-dimensional Space Filling Curve where the x-y dimensions correspond to lati-
tude and longitude of a map and the z's represents the "service" rendered. By construct-
ing a Sierpinski's curve through the fractal cubicals (shown as the bolded dashed line in
Figure 5), one can discern the logical clusters of locations where services can be delivered
by a single vehicle-tour. In the medical-evacuation problem shown in Figure 5, the Space
Filling Curve identifies the hospitals to which the wounded U.S. soldiers can be delivered
from the Charlotte hub where the wounded from overseas are initially dropped off. In
this example, a planimetric base with latitude and longitude information can be com-
bined with ancillary data such as the hospital beds available at each location to complete
the entire analysis, as shown in the following table (Carter 1990):

Sierpinski

Location i Hospital Latitude x i  Longitude yi Patients z i  Function

1 Charlotte 35.21 80.44 0 0.03125

2 Ft Gordon 33.37 81.97 39 0.81250

3 Ft Bragg 35.17 79.02 234 0.83940

4 Ft Jackson 33.94 81.12 44 0.90630

5 Charleston, SC 32.90 80.04 29 0.95310

When the three-dimensional space-filling curve (or Sierpinski's curve) is constructed as in
Figure 5, the cluster of points on the "spaghetti-strand like" curve-Fort Gordon, Fort Bragg,
Fort Jackson, and Charleston--constitute a tour. Remember that the spatial separation between
the depot at Charlotte and the four hospitals listed are represented as distances on the wrap-
around curve via the Sierpinski function. Granted that the use of Space Filling Curve (SFC) is
not as precise as an analytical model based on mathematical programming, one can readily
agree that this approach exploits the existing data structure in GIS, and the solution has been
shown to be asymptotically within 25 percent of the optimal as the number of hospitals grows.
Most importantly, the SFC algorithm executes with a computational complexity of O(n log n).

The generic SFC heuristic works as follows:
Step 1. Depending on whether we are solving a two-or three-dimensional problem,

transform the problem in the unit square or cube, via an SFC, to a problem on the normal-
ized unit interval. For example, given the n three-dimensional coordinates(dli, d2 i, d 3 i) of the
nodes i (demand points), compute the Sierpinski number v(dli, d2i, d3i) for each node.

Step 2. Solve the easier location or/and routing problem on the unit interval 0 - t - 1. 
SFC is particularly adept in measuring spatial separation. For example, it is common to

apply the SFC to routing problems, such as the travelling-salesman problem (TSP), defined as
the tour that visits specified demand points from a depot and returns in the shortest length.
Such a tour can be approximated by the Sierpinski curve by sorting the numbers 1 in ascend-
ing order and visit the cluster of nodes in the same order producing a tour. In a logistical
application, any point in the tour can be the depot, as long as this 'warehouse' is the most log-
ical considering the locations of these warehouses vis-a-vis the central depot from where the
warehouses receive their supplies (and in turn deliver to the final demand points.) A distinct
advantage of the SFC is that it executes in seconds-a far cry from the formal solution of a
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Figure -- Three-dimensional space filling curve

TSP! The speed allows a large number of replications to be computed very quickly corre-

sponding to a variety of stochastic demand scenarios.

C. Real-time diversion example. As yet another example, Regan et al. (1995) investigated

the real-time diversion strategies for commercial-vehicle operations. Under idealized geome-

tries directly discernable from GIS, the authors outlined the scenarios where diversions may

be beneficial. The following fundamental question is asked, "While a driver is en route to a

load, information about another load to be moved becomes available. What is the probabili-
ty, given various diversion-decision rules, that the driver will be diverted to serve the new

load first? What is the probability that following such diversion-decision rules will result in

a reduction of overall distance traveled? And, what are the associated expected restrictions

in travel?" Simulation experiments show that the greedy or myopic look-ahead strategy con-

sistently lead to a reduction in overall travel, even with very limited real-time information.

In other words, the primary contribution is derived from the database organization, which

facilitates the use of such real-time information (including that from the Global Positioning

System which provides the precise location of a vehicle for navigational purposes).
Consider the example in Figure 6, a vehicle that begins at the center C of a circle and

moves toward a load origin x1 that is uniformly and randomly generated over the area of
the circle. Given a diversion-point P some fraction of the distance from the center C of the

circle and origin x1, what is the probability that the distance between the diversion point P,
to a new origin x3 will be less than the distance from P to origin xI? Let ot, 0 -< 0. -- 1, denote
the fraction of the distance from C to x I travelled to reach P. It can be shown that the proba-

bility that the distance from P to the new origin is less than to the old origin is given by (1-

U)2/2. Following a myopic strategy of diverting to the new demand origin x3 if it is closer to

the diversion point than origin x1, then (1-a)2/2 represents the fraction of loads for which we

actually divert.
A more plausible diversion-strategy would also consider the relative distances between the

destination point of the first movement X3 and x1 and the origin point of the next load x2 and x4 .

In Figure 6, these are given by C(x2,x3) and C(x4,x1) respectively In this case, diversion is chosen
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if C(Px 3)+C(x4,x1)<C(P,x1)+C(x2,x3). Analytic derivation of the corresponding diversion proba-
bility under this strategy is no longer straightforward because the respective distances are not
independent. Correspondingly, the diversion likelihood and associated expected benefit are
evaluated using a simulation program. The analysis can be further extended to consider several
demands in a particular decision to divert and to look at demands that are uniformly generated
in space but arrive according to a Poisson stream as well as from a uniform distribution. In
addition, Regan et al. have explored operational constraints in which every demand must be
served, and those in which there is freedom to accept or reject demands according to the cost of
serving them. The exploration of idealized scenarios suggests that a reduction of overall travel
distance of between five to ten percent would not be unreasonable. In lieu of re-routing, optimal
re-sequencing of the first few queued demands results in an attractive shipping strategy. Notice
this is analogons to metering and spacing in the Air-Traffic-Control System in which the takeoff
time from origin airport A is delayed to avoid the congestion at destination airport B.

When a TSP routing is considered, the problem is termed the dynamic travelling-
repairman problem (DTRP). Asymptotic analytical-results of the DTRP are reported in
Psaraftis (forthcoming) for both the single- and multiple-vehicle cases. Healy and Moll
(1995) showed that extension can be made to the local-improvement algorithm. Inasmuch as
the local-search is often characterized by uneven neighborhood structure (instead of a circle
as shown in Figure 6), a universal secondary metric, neighborhood size, can be used as a
proxy metric for the search algorithm. The strategy is to move away from a primary-metric
local-optimum to a neighboring solution if the new solution's primary-metric evaluation is
not much worse, and the new solution has a larger feasible local-neighborhood. Federgmen
and Tzur (1996) proposed an exact solution to this routing problem. One thing is clear, all
algorithms rely on the availability of geographic information, whether it be a neighborhood
defined by a circle or one with irregular shape.

--- ---. J DiversionpointP

A
X4  Center C

Figure 6-Diversion example (Regan et al. 1995)
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V. REMOTE SENSING
Remote sensing can serve as an excellent source of timely (and even real-time) informa-

tion for GIS. The weather satellite, for example, has resolution of one kilometer, and a single
pass of such satellites can cover areas the size of a continent. Very inexpensive roof-top
antennas can be used to collect such data on a real-time basis. LANDSAT has a finer resolu-
tion of 80 by 80 meters, and recent versions have pixels as detailed as 30 by 30 meters. Pixels
smaller than one meter are available in military reconnaissance (Zimmerman 1988). Currently
in the commercial market, SPOT is able to offer 10-meter resolution in black-and-white and 20
meters in color. In July 1987, the then Soviets offered a 6-meter resolution satellite. Sweden is
now considering a satellite offering as fine as one-meter resolution. LANDSAT and certain
Russian satellites can detect long-wave-length radiation produced by heat sources. Both
LANDSAT and SPOT can "see" short-wave-length infrared radiation. Being able to sense
heat sources and infrared radiation is a tremendous asset of remote sensing not affordable by
regular sources of information such as census and traditional aerial photography There is a
physical limitation about satellites however. They cannot orbit the earth faster than once
every 90 minutes or aerodynamic drag would become insurmountable. They can only photo-
graph a limited swath of the earth during each revolution, and oftentimes many swaths have
to be pieced together as in aerial photography to make up a complete picture of a study area.
Considering its orbits around the earth, an average lag-time of half-of-a-day is required to
acquire a specific picture. Geosynchronized satellites such as GOES overcome this problem,
but at a tremendous cost. Generally speaking, the best satellite would require a full day to
photograph the entire earth given the speed with which it can orbit.

A. Sensors. To turn satellite images into useful information, it is necessary to classify
pixels into land-cover "objects" such as forests, lakes, oceans, and man-made objects such as
airfields and buildings. Such image classification is often referred to as pattern recognition.
Spectral pattern recognition refers to a set of decision rules that are based solely on the spec-
tral radiances observed in the data. Thus, grass emits a different radiance in comparison
with rock, and we say that grass can be spectrally recognized and distinguished from rock
on this basis. Spatial pattern recognition, on the other hand, is a set of decision rules based on
the geometrical shapes, sizes, and patterns present in the data. A contiguous block of pixels
of certain grey values, for example, can represent a lake. If we know the shape of an object in
addition, such as a rectangular runway, we can start to look for a patch of concrete with such
an elongated shape as well. The remote-sensing characteristics of the Advanced Very High
Resolution Radiometer (AVHRR) of the National Oceanographic and Atmospheric
Administration satellites are facilitated by five spectral bands (Sabins 1987). The first band is
best for the detection of clouds and vegetation. Band two is most suitable for detecting
shorelines and vegetation. Band three is used to detect hot targets such as fires and volcanos
and so on. With five or more spectral bands, most modern satellites can gather a wealth of
information unimaginable just a couple of decades ago. This information allows much
better-informed decisions ranging from manmade-or-natural-hazard management to
environmental monitoring.

To illustrate the sophistication of remote-sensing in image classification, we have included
in Figure 7, shown as an elongated rectangle lined up with 17th Street, a portion of the
Washington, D.C. mall. SPOT images of this area are shown in Figure 8, including channels
one, two, and three. It can be seen that channel one is particularly adept in detecting bodies of
water such as that found in the Constitution Garden, the Reflecting Pool and the Tidal Basin.
Channels two and three, on the other hand, are very poor sensors of water while they could
very well be excellent sensors of other land-cover types (such as pavement). By a combination
of more than one sensor, one can improve identification and recognize land-cover features
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with better confidence (Amrine 1992). Depending on the problem we are solving, the perti-

nent sensor can be exploited correspondingly. By a combination of remote-sensing images,

including satellite and aerial photography, one can, in turn, construct a variety of image

scales. For example LANDSAT multi-spectral scanner images provides scales of one in

250,000 or smaller. At the other end of the spectrum, low altitude aerial photography provide

images larger than one in 20,000 scale (Anderson 1976). One thing is clear, the information

afforded by remote sensing is extremely rich, providing multi-level classification, such as
Figure 8, of images for various applications. Combined with other data in a traditional GIS,
the modelling procedure can be further enhanced.
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B. Advanced information. Aside from target-recognition and intelligence applications,
remote sensing offers advanced information that allows for pre-planning to take place. Given
a two-dimensional data set, such as a satellite picture, if we have elevation information in
addition, which can be derived from a series of satellite pictures at different viewing angles, a
geometric model can be constructed in the computer. The output image will be a three-
dimensional representation of what started as a two-dimensional scene. This type of image
manipulation has many possible uses. American B-1 bomber pilots could rehearse in simula-
tors low-level bombing missions, becoming familiar with enemy terrain without ever getting
near it. The same can be performed for other air-mobility missions in the theater. In this case,
advanced, instead of real-time, information is available for vehicle-routing purposes. Such
advanced information allows planning in anticipation of future events. In Intelligent
Transportation Systems, remote-sensing can monitor highway-traffic flow, offering
advanced warnings to motorists about potential congestion and advising them about
diversion strategies using the appropriate exit and entrance ramps.

Let us discuss this traffic-monitoring example in further detail. McCord (1995) experi-
mented with the use of remote-sensing devices to monitor traffic flow. Specifically, he
explored the use of geosynchronized satellites to measure traffic-flow via the fundamental
equations governing flow, density, and velocity (Morlok 1978). He found that the latest
(commercially available) technology does not have the one-meter resolution detailed
enough for such applications. Currently, no geosynchronized satellites offer one-meter reso-
lution, only orbiting satellites offer this capability. This poses the additional challenge as to
how many highways one can "see" per unit time. He did, however, design a methodology
using nonlinear programming to outline how this can be performed once the appropriate reso-
lution is available. He found out that one can cover about one percent of the highways in the
Continental United States per day Sensitivity analysis shows that data transmission and res-
olution are the limiting factors to increase coverage. To the extent that the fundamental flow-
equations govern all modes of transportation, including air traffic, such a methodology is
general enough to monitor other traffic-flow patterns. It represents a worthy research agen-
da that will eventually provide real-time strategies for traffic control. This is particularly
cogent for the military, which has the technology to gather less than one-meter resolution
images and the communication capacity for electronic data-transfer.

VI. SPATIAL-INFORMATION PROCESSING AND MODELLING
As mentioned, the fundamental idea behind image classification is that different land-

cover types are associated with different combinations of digital numbers (DNs) based on the
inherent spectral reflectance and emittance properties on each sensor-scanner band. We often
refer to such combinations as signatures of different land-cover types, which allow for their
accurate identification. Once spectrally identified, spatial pattern-recognition involves the cate-
gorization of image pixels on the basis of their spatial relationship with pixels surrounding
them. Spatial classifiers might consider such aspects as image texture, pixel proximity, feature
size, shape, directionality, repetition, and context. Noncontextual classification is based only on
spectral pattern-recognition while contextual classification is based on both spectral and spatial
pattern-recognition. Both of these two classification-results can be compared with the "ground
truth." More sophisticated classifiers employ Bayesian statistics exploiting updated information
and a logistic-discriminant model which considers the context of a pixel. It can be verified that
contextual classification often yields a much more satisfactory result than its noncontextual
counterpart (McLachlan 1992).

While these classification techniques are well established, a more interesting, tempored
extension can be shown in a deforestation study at the eastern part of Texas. We trace a sin-
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gle pixel of a weather-satellite image of the Texas-gulf-coast forest over a 144-week period.
This time-series information includes approximately three years of data depicting decline of
the vegetation in the fall and winter and greening in the spring. Typical time-series analysis
can be performed on this set of data by removing the seasonality and analyzing the resulting
"stationary" data. We show an example series for pixel 191 in Figure 9. Sophisticated analy-
sis can be performed on this time series to discern whether the vegetation is healthy or
deforestation is taking place. The idea is to trace deforestation spatially as well as temporally
discerning the possible "spread" of any disease.
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Figure 9-Time series of a pixel in Eastern Texas (Robinson 1987)

A. Transportation Planning Models. An extension of such an analysis can be applied to
transportation applications, in which the migration of population or employment can be
tracked in the same way To model this type of economic-activity and land-use information,
we show the fundamental ideas in Figure 10. Here a subject pixel is shown at the center of
the image, which could very well represent the source of deforestation or downtown
employment. Similar to the spread of deforestation, residential-location preferences can be
modelled as the first-, second-, third-, and fourth-order neighbors-sometimes known as the
rook and bishop contiguities and so on. It is not at all difficult to construct a "weight matrix"
out of such contiguity information, as shown by the zero-one entries in Figure 11. Thus if
one examines the row "e" of the weight matrix, the first-order neighbors b, d, f and h are
marked with a "1". Once such weight matrix has been constructed, we have the center piece
of most spatial analysis. The most common spatial-interaction functions, manifested typically
in gravity models, are simply modifications of such a weight matrix (Chan-forthcoming).

Figure 12 shows a spatial function where spatial cost is calibrated by a power-function of
beta (P). When beta is equal to one we have a Euclidian-distance measure between a target pixel
and its surrounding neighbors as commonly illustrated and approximated in the first, second,
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Figure 10-Spatial order in a grid

third, fourth-order (or higher-order) contiguity relationship. When beta is equal to two, a
Newtonian form of the gravity model results. Instead of a zero/one weight matrix, entries of
the weight matrix are now generalized to fractional values, broadening the contiguity concept
to cover an amazingly rich number of spatial models, including many forms of transporta-
tion analysis. Thus row "e" of the weight matrix W= [w ii] may assume the form

/~ --

W ej= ce cjc+ U (=bdfh)(1

for first-order neighbors and
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J ° (j=a,c,g,i) (2)
e = CP+CP+CP+C x" 2

ea ec eg el

for second-order neighbors. For normalization purposes, there may be a requirement to
have the row sum of spatial weights equal 1:

w +Web+WC+Wed+we w +w j+Weg =1. (3)

It turns out that this simple idea is behind all spatial interactions, including spatial competition
in modelling market shares of competing retail outlets. A common use of such weight matrix is
in forecasting travel demand, such as destination choice, transport-mode choice and route-
choice (Oppenheim 1994). Although less well-publicized, it is behind the analysis of spatial
conflicts such as Cournot-Nash games as well, of which predicting the outcome of a regional
conflict is a natural application (Harker 1986).

d e f

W a b c d e f C h i

a 0 1 0 1 0 0 0 0 0

b 1 0 t 0 1 0 0 0 0
c 0 1 0 0 0 1 0 07 0
d 1 0 0 0 1 0 1 0 0

C 0 1 0 1 0 1 0 1 0

f 0 0 t 0 1 0 0 0 1

0 0 0 1 0 10 1 0 1 0
h 0 0 0 0 1 0 0 11 0 1
i Lo 0I o T o0 1 1 1 0 1o

Figure 11-Illustrating the rook weight matrix

Shaw (1993) examines the GIS requirements for integrating urban-travel-demand mod-
els consisting of trip generation (normally performed via linear regression), destination
choice, mode choice and route-choice. He suggested that an ideal GIS for spatial analysis is a
true integration of full GIS and modelling capabilities within a single system. The main diffi-
culty associated with this approach is the differences of data requirements and analysis pro-
cedures between the GIS functions and various modelling procedures. He conjectured that a
full integration of GIS and modelling capabilities is unlikely to take place, at least in the fore-
seeable future, because of two major reasons. First, a GIS-data model that could handle com-
plex spatial relationships of spatial entities is yet to be developed. Second, the range of
analysis procedures for various modelling applications is so wide, if not unbounded, that it
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Figure 12-Spatial function

is not feasible to rely on a single data model to support all of them. I am a great deal more
optimistic about the prospects, however, given the commonalities among spatial analysis as
pointed out throughout this paper, and there is no reason why a GIS-data model cannot be
constructed to capture this. We will come back to this point at the conclusion of this paper.

B. Intelligence Application. Combining spatial with temporal techniques, one can model a
spatial time-series as the intelligence application illustrated in Figure 13, which tracks almost
80 months of data for 20 regions in the study area and shows the spatial distribution of an
activity ranging from economic activities to natural-and-manmade disasters, including
regional conflicts. In a study of a world-wide sensor system, Greene (1992) investigated the
use of spatial-temporal-autoregressive-moving-average technique to forecast incidents that may
happen around the globe. Building upon the spatial-order relationship as shown in Figure
10, the relationship between geo-political events among the 20 regions is modelled. When
the spatial relationship is projected forward in time, it allows the U.S. Department of
Defense to anticipate incidents and to initiate the necessary tasks to handle the situation. The
following model is used:

p )k q Mk

k=1 1=0 k=1 1=0

Here z(t) is the 20-entry activity vector corresponding to the 20 regions being monitored,
4) and 0 are calibration constants, W(1) is the 20x20 weight matrix for spatial order 1 (with
W(°)=I). Matrix W(1) has nonzero elements only for those pairs of sites that have been
defined to be lth order neighbors. First-order neighbors are understood to be closer than sec-
ond-order neighbors, which are closer than third-order neighbors, etc. The modeler specifies
exogenously the order and magnitude of a nonzero entry for a particular pair of sites.
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Instead of a "natural" projection similar to the East-Texas Vegetation Study, precipitous
events may take place. A typical precipitous event is a "doctrinal change," defined as an
abrupt switch over of operations. After the model included a doctrinal change of the adver-
sary, it achieved significant success in forecasting incidents at region 11. Thus the univariate ver-
sion of Equation(4) for the 11th entry of the activity vector took on the form of a
moving-average model (or the second group of terms in Equation (4) above) with the first
group of autoregressive terms dropped out:

2 1

k-, (5)

=--0.424a(t- 1) +0. 160W(1)a(t- 1) -0.396a(r-2)+0.131 W(1)a(t-2)O.5865a(- 12) *a(r)

Ili- o b. 2.0
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Figure 13-"Univariate STARMA for region 11 [Greene 1992]"

where W) is the 11th-row vector of W)'. Here a 12-month seasonal-pattern was detected,
and correspondingly modelled by the extra term introduced beyond the model specification
in Equation (4). This extra term essentially removes the seasonal pattern similar to that
shown graphically in Figure 9. Example weights between regions 11 and its first-order
neighbors look like

Region 7 9 13 15 17 19
Weight 0.68 0.17 0.12 0.01 0.01 0.01

where the sum of the weights equals unity as suggested by Equation (3). It can be seen that
one only needs some very common-place statistical-functions such as autocorrelation compu-
tations-the temporal or spatial analogue of the regular Pearson-correlation coefficient used
in ordinary-least-squares regression-to effect such a model. Such computations can be
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added to a GIS package in a straightforward manner. This three-dimensional plot illustrates
the tremendous potential of GIS in model construction even when the time dimension is
included.

B. Routing revisited. It turns out that the spatial-cost function as shown in Figure 12 has
profound implications on spatial organization, since it is really the "price system" that allo-
cate resources spatially. Aside from locating pixels, these resources include anything from
transportation terminals, depots, to population and employment. For example, under
Euclidean distance (3=1), nodes on a network are often optimal locations to place a depot.
This is a well known result in discrete facility-location, often attributed to Hakami (1964).
When P is no longer unity, such optimal locations could very well be on an arc (or link) of
the network and nodal optimality condition is destroyed. When a discrete network is
replaced by a continuous plane, it can be shown that an optimal location may not even
exist-as shown in the classic Steiner-Weber problem (Weslowsky 1993). As alluded to already,
there are totally different locational implications when the spatial cost-function,
f(distance)=f(C)=CP, has the form of constant return-to-scale, f(C)=Cl, increasing return-to-
scale, f(C)=CP for 0<1, and decreasing return-to-scale, 0>1.

Distance is often measured in the Minkowski metric, (C)-as is common for approxi-
mating highway distances between two points on a map (6ove et al. 1988). The spatial cost-
function now becomes f(distance) = [lp(C)]=[(yiCiP)1/P], where Ci is the rectilinear metric
as measured in the east-west direction or north-south direction (or for that matter, any third
or fourth dimension and so on). In this case, spatial cost f no longer satisfies the triangular
inequality fik:5 fij+fk when P>1 (Love et al. 1988). This in turn invalidates a number of
important procedures for solving travelling-salesman and vehicle-routing problems, includ-
ing column-generation schemes commonly used in solution algorithms. Most importantly,
performance guarantees no longer exists. And this applies to other heuristics algorithms
such as the classic Clarke-Wright and spanning-tree procedure for solving travelling-sales-
man problem (Lawler et al. 1985). The space-filling-curve heuristic mentioned above, how-
ever, maybe robust enough to be still applicable (Bartholdi and Platzman 1988).

VII. SPATIAL ANALYSIS
Carrying the analysis concept of integrating spatial-data with analysis, more sophisticated

models can be built on the database and data structure. In fact the general family of models
illustrated in Figure 9 and Figure 13 is referred to as the auto-regressive-moving-average model
(ARMA). When we take the spatial dimension into account, such as in the previously men-
tioned deforestation study in eastern Texas, the model becomes the space-time-auto-regressive-
moving-average model (STARMA). In the case of tracking a single pixel we had no spatial
dimension and henceforth no spatial weights are employed. With the spatial dimension
included (and hence a spatial weight matrix,) the model becomes a lot more versatile and
robust. It allows us to analyze, for example, whether a point source of pollution has spread
among vegetation spatially. Thus we are relating deforestation not only to time, but also how
it spreads geographically. We can readily extend this idea to many facility-location, land-use,
and transportation models. Placed in a broader methodological framework, STARMA is a
version of the general vector-time-series models that has accumulated a wealth of knowl-
edge base over the years. A specialization of STARMA is the econometric models that fore-
cast economic activities (Chan-forthcoming). To the extent that future economic and
geo-political activities drive transportation and mobility requirements, we show how the
advocated spatial-structure will help such forecasts.

A. An econometric model. In the 1970s and 80s, a very widely disseminated economic
forecasting-model EMPIRIC is in fact a mixed-regressive-spatial-autoregressive model. An exami-
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nation of the following equations would verify this. It can also be shown to be a one-lag
specification of the STARMA model-specifically the mixed-regressive-spatial-auto-regres-
sive model: z=4)Wz+ZP+E (Anselin 1988), where Z is a matrix of exogenous

[, 0 olian xorx

variables measuring n x K or 3 x 3 in the following example. 4 -0 is ann x nor 3x3
0 0 g0

matrix consisting of autoregressive coefficients at its diagonal, and 3 is a vector of calibra-
tion coefficients measuring K x I or 3 x 1. The reader can verify that this is a specialization of
Equation (4) when the moving-average terms are replaced by the regressive terms Z3.
Population, white-collar (w.c.) and blue-collar (b.c.) employment and hence travel demand
have been successfully forecast in seven cities of North America using this sample EMPIRIC
equation set.

(Apop),.,0.32(Aw.c.emp),, -0.006(pop),+l.93(aaccess to emp),,

(Aw.c.emp), 1 =0.42(Apop), -0.006(w.c.emp),+0.96(Aaccess to pop),.,

(Ab.c.emp),,=0.16(Apop),1-0.013(b.c.emp),+l.00(Aaccess to pop), 1

pop, 0 0 1
Here z=(Apop, Aw.c.emp, Ab.c.emp) T,Zf=Zl 1+Z221, z% = 0 w. C. emp 0 1, where

0 0 .b.c. emp

2. Aerr access,., 0 0 1T 2=19

= 0 Apop access,. 0 , =(-0.006 -0.006 -0.0 13) "  =(1.93
0 0 Apop access. 1I

1.0f,0.32 0 0 1
0.96 1 00 0 )T, * 0 0.42 0 E is the error term in forecasting and the

0 0 0.6,

r0 101.
weight matrix is simply v = 0 . The weight matrix in this case goes well beyond geo-

1100

graphic contiguity. It represents "causal analysis" among economic sectors, showing the inter-
dependency between population, white-collar employment and blue-collar employment.

The point is now clear, the desirable development of future GIS should keep in mind the
synthesis between data collection and model development. We have shown by very simple
examples that by judicious organization of data structure, facility-location, land-use, and
transportation models can be readily built on top of a GIS. Standard spatial-statistics tools is
a natural processor to be built upon the data pool, affording such computations as spatial
auto-correlation, spatial interaction (the gravity model), entropy (an alternative to the grav-
ity model in spatial allocation and organization), spatial dominance, and uncertainty (Pooler
1992). The last two-spatial dominance and uncertainty-are particularly relevant toward
games and competition in which the physical positions of participants become important in
their strategic advantage or lack of advantage over other participants. Available literature
points to the fact that these specific techniques are nothing but special cases of the weight
matrix. Specialization of the weight matrix will therefore allow these functions to be imple-
mented very readily Combined with the spatial homogeneity assumption-the assumption
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that each geographic unit behaves similarly-a whole host of transportation models can
possibly be operationalized in real time, including spatial gaming and competition.

B. Voronoi diagrams. Another very exciting spatial-analysis development is in Voronoi poly-
gons and its dual graph, Delaunay triangles, where both terms refer to tile-like patterns of parti-
tioning x-y space. These are examples of spatial tessellation which has been identified as one of
the most promising in a number of analysis, including spatial and transportation modelling
(Okabe et al. 1992). Built upon the primal-dual concepts, Figure 14 shows the fundamental ideas
behind this paradigm. Overlaid on top of the tile-like Voronoi polygons is the dual graph:
Delaunay triangles. It can be seen that the triangles form the shortest paths linking up the
"centroids" of the polygons. They form the natural channels for traffic flow between these sub-
regions in the study area. Instead of the conventional square grids, such a pattern can be over-
laid over a map to facilitate vehicle routing, including combat-aircraft routing (Information
Warfare Center 1995). Figure 15 shows the very convincing power of these techniques in repli-
cating the county boundaries in Ireland. Thus human settlement can possibly be "explained"
in terms of such a spatial-analysis tool. The readers can verify easily that spatial-tessellation
techniques-a systematic way of partitioning space--can be implemented quite straightfor-
wardly given the database organized around a GIS, using a vector data-structure such as the
one shown in Figure 3.

Legend
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Figure 14-Voronoi polygons and dual Delaunay triangles

In spatial economics, a considerable number of studies have been carried out to examine
market-area stability. Firms are located to compete against each other in order to maximize
their profits. Suppose there are n firms located at x1, ...,xn in a region RT, and these firms are
selling the same products with the same mill price-price not including a delivery cost. We
assume that the delivery cost from a firm at xi to a consumer at x is proportional to the
Euclidean distance II xi -x II, and that consumers buy the products from the firm that quotes
the lowest delivered price (the mill price plus the delivery cost). Under these assumptions
the configuration of n market areas is represented by the ordinary Voronoi diagram
R()= {R(x 1),..., R(xn)}, and the market area of firm i is represented by the Voronoi polygon
R(xi). We further assume that the demand for the products is uniformly distributed over
region RT; the marginal cost of the products is the same for all firms; and relocation cost is
negligibly small. Then the profit of firm i is proportional to the area R(xi). The firms compete
in terms of their locations to maximize their profits. As a result we observe a spatial-
competition process of n firms over time. The Voronoi diagram (or the market areas) may
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Figure 15--"Defining Irish Counties using Voronoi diagrams [Okabe et al 1992]"

change over time, or it may eventually reach an equilibrium state in which all firms have no
incentive to relocate (a Nash equilibrium). To be precise, the configuration of the n firms is in
global equilibrium if and only if no firm can find a more profitable location than the present
location, that is, the Voronoi diagram R*={R(xl*),....,R(xn*)} is in global equilibrium if and
only if

IR(x) {R(x,)I I [X_, XJ (/-]} (10)
x1 ERT

for any iET, where X*i={xl*,..,x *,xi+*,..,xn*} and I is the set of all discrete candidate-loca-
tions. It can be shown that the same concepts can be carried over to other spatial competition
and conflicts, including military operations in the theater level (Electronics and Space
Corporation 1994).

VIII. CONCLUSION
In this paper, we have introduced remote-sensing as a viable source of real-time informa-

tion. To the extent that aerial photography is one kind of remote sensing, the concept is not
new. The large number of channels available in today's satellites, however, make available
information that the bare eye cannot see, affording infrared and heat-sensing signals that are
essential in transportation, reconnaissance, and target-location applications. Geosynchronized
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satellite constellations also provide real-time raster-images to a fine level of resolution, not to
say the Global Positioning System, which is used extensively for navigation (US Department
of Transportation 1995). Geographic information systems (GIS) allow the merging of data
from diverse sources-from remote-sensing to survey and interview data. Modern data-
processing capabilities such as relational database and object-oriented programming do not
only facilitate data fusion, but also greatly streamline modelling applications, including spa-
tial analysis. To the extent that spatial relationship is the basic building block for transporta-
tion and locational modelling, GIS becomes an integral part of today's analysis toolkit. It has
been shown in this paper that a very desirable focus of GIS is problem solving. With the con-
venience of electronic data-transfer, GIS is also a global information system, affording truly
distributed decision-making to take place. It is the contention of the author that through
remote-sensing and through a very careful planning of the data structure, transportation,
facility-location, and land-use analyses can be readily performed using models based on a
spatial-oriented set of data-processing procedures including spatial statistics. Prescriptive
tools can also be easily incorporated into a GIS. For example, optimization procedures based
on the "generalized algebraic modelling language" builds heavily upon arrays that are orga-
nized in certain ways, representing vectors and matrices in a mathematical-programming
model. These vectors and matrices (such as the "node-arc incidence" matrix) can possibly be
extracted directly from a GIS through relational-data organization. The same arguments
hold for recent emphasis on spreadsheet-based management-tools ranging from optimiza-
tion to simulation. The developers of GIS should keep this in mind in their future endeavors.

We have demonstrated in this paper that there are some very basic principles involved in
spatial-temporal analysis-a term that encompasses transportation, facility location and land
use. Instead of calling upon a variety of analysis tools, data-oriented computation tools can be
easily embedded into the database. The first example is the efficient space-filling-curve
location-routing heuristic, which builds directly on the latitude-longitude coding of a location
and an additional ancillary database (Chan-forthcoming). By preprocessing the interpoint
distance data as both candidate and demand strings, an 0(n) algorithm is found to locate
facilities for a study area that can have up to 3,000 nodes. A third example is a simple "look-
ahead" capability in a spatial database that will allow real-time diversion of vehicles in case of
unexpected demands. In reconnaissance, spatial pattern-recognition builds directly upon the
concept of contiguity, which is easily implemented on top of a spatial database in terms of a
weight matrix. It turns out that such a weight matrix and the associated spatial-cost function is
also the common vehicle to effect gaming and competition, not to say the placement of facili-
ties, population and other economic activities such as employment on a plane or network,
which in turn generate demand for transportation. Among other procedures, we have shown
how the spatial-temporal-autoregressive-moving-average (STARMA) model or its specialized
econometric form can be used to allocate economic activities over time. The allocation of these
spatial resources is further assisted by the time-honored analysis tool called Voronoi dia-
grams-a technique based heavily on a spatial database. These examples provide convincing
arguments for a brand new, simple and robust way of performing transportation and spatial
analysis based directly on a database. Most importantly, these analysis tools can be truly exe-
cuted on a real-time basis once the basic database (to be contrasted with the derived database)
is in place.
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ABSTRACT

We describe a multi-period optimization model, implemented in GAMS, to help
the U.S. Air Force improve logistical efficiency. It determines the maximum on-time
throughput of cargo and passengers that can be transported with a given aircraft fleet Op mizat ion
over a given network, subject to appropriate physical and policy constraints. The
model can be used to help answer questions about selecting airlift assets and about Mod
investing or divesting in airfield infrastructure. for Airlift
1. INTRODUCTION Mobility'

In an Operation Desert Storm type scenario, massive amounts of equipment and
large numbers of personnel must be transported over long distances in a short time.
The magnitude of such a deployment imposes great strains on air, land and sea mobili- David P. Morton
ty systems. Graduate Program in

The U.S. military services are well aware of this problem and various optimization Operatios Research
and simulation models have been developed to help improve the effectiveness of limit-
ed lift assets and alleviate the problem. Congress commissioned the Mobility Re- University of Texas
quirement Study (MRS) in 1991, when post-operation analysis of Desert Storm revealed
a shortfall in lift capability. Richard E. Rosenthal

Two linear programming (LP) optimization models that were developed as part of Operations Research
MRS and subsequent studies form the primary background of this research. They are: Department
(1) the Mobility Optimization Model (MOM) developed for MRS by the Joint Staff's Naval Postgraduate
Force Structure Resource, and Assessment Directorate (J8) [Wing et al., 1991] and (2) the
THRUPUT Model developed by the USAF Studies and Analyses Agency (USAF/SAA) School
[Yost, 1994]. MOM considers both air and sea mobility, whereas THRUPUT and the
model developed here cover only the air aspects of the problem. The model of this Captain Lim Teo Weng
paper was first described in a Naval Postgraduate School master's thesis [Lim, 1994], Republic of Singapore
which was sponsored by USAF/SAA. Air Force

In this research, the strategic airlift assets optimization problem is formulated as a
multi-period, multi-commodity network-based linear programming model, with a
large number of side constraints. It is implemented in the General Algebraic Modelling
System (GAMS) [Brooke et al., 1992], and its purpose is to minimize late deliveries sub-
ject to physical and policy constraints, such as aircraft utilization limits and airfield
handling capacities. For a given fleet and a given network, the model can help provide
insight for answering many mobility questions, such as: 1) Are the aircraft and airfield
assets adequate for the deployment scenario? 2) What are the impacts of shortfalls in
airlift capability? 3) Where are the system bottlenecks and when will they become
noticeable? This type of analysis can be used to help answer questions about selecting
airlift assets and about investing or divesting in airfield infrastructure.

2. OVERVIEW OF MODEL
The analyses described above are accomplished through repeated runs of the

model. Each run assumes a particular scenario as defined by a given set of time-phased
movement requirements and a given set of available aircraft and airfield assets. It is
then solved for the optimal number of missions flown and the optimal amounts of
cargo and passengers carried, for each unit, by each aircraft type, via each route, in
each time period.

2.1 Model Features
The model has been designed to handle many of the airlift system's particular fea-

tures and modes of operation. For example, the payload an aircraft can carry depends
on range (the shorter the range, the heavier the load), and aircraft with heavy loads
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may be required to make one or more enroute stops. Also, there is a need to ensure cargo-
to-carrier compatibility since some military hardware is too bulky to fit into certain air-
craft. These features have been incorporated in the model to make it as realistic as
possible. Others, such as the use of tanker aircraft for aerial refueling of airlift aircraft are
recommended as follow-on work. (See CONOP by RAND [Killingsworth and Melody,
1994] for extensive treatment of aerial refueling in another GAMS-based optimization
model.) The major features of the airlift system currently captured by the model include:

* Multiple origins and destinations: In contrast to MOM, the current model allows
the airlift to use multiple origin, enroute and destination airfields.

" Flexible routing structure: The air route structure supported by the model
includes delivery and recovery routes with a variable number of enroute stops
(usually between zero and three). This provision allows for a mixture of short-
range and long-range aircraft. The model can thus analyze trade-offs between
higher-payload, shorter-range flights and lower-payload, longer-range flights.
For further routing flexibility, the model also allows the same aircraft to fly differ-
ent delivery and recovery routes on opposite ends of the same mission.

" Aircraft-to-route restrictions: The user may impose aircraft-to-route restrictions;
e.g., only military aircraft may use military airfields for enroute stops. This par-
ticular provision arises because the USAF Air Mobility Command (AMC) may
call upon civilian commercial airliners to augment USAF aircraft in a deploy-
ment, under the Civil Reserve Airfleet (CRAF) program. The model distinguishes
between USAF and CRAF aircraft.

* Aircraft assets can be added over time. This adds realism to the model, because
CRAF and other aircraft may take time to mobilize and are typically unavailable
at the start of a deployment.

* Delivery time windows: In a deployment, a unit is ready to move on its available-
to-load date (ALD) and has to arrive at the theater by its required-delivery-date
(RDD). This aspect of the problem has been incorporated in the model through
user-specified time windows for each unit. The model treats the time windows as
"elastic" in that cargo may be delivered late, subject to a penalty.

2.2 Conceptual Model Formulation
This section gives a verbal description of the key components of the airlift optimiza-

tion model. The mathematical formulation is covered in detail in Section 3.
The primary decision variables are the number of missions flown, and the amounts

of cargo and passengers carried, for each unit, by each aircraft type, via each available
route, in each time period. Additional variables are defined for the recovery flights, for
aircraft inventoried at airfields, and for the possibility (at high penalty cost) of not deliv-
ering required cargos or passengers.

2.2.1 Objective Function
The purpose of the optimization model is to maximize the effectiveness of the given

airlift assets, subject to appropriate physical and policy constraints. The measure of effec-
tiveness is the minimization of total weighted penalties incurred for late deliveries and
non-deliveries. The penalties are weighted according to two factors: the priority of the
unit whose movement requirement is not delivered on time, and the degree of lateness.
The penalty increases with the amount of time late, and non-delivery has the most aus-
tere penalty.

Page 50 Military Operations Research, Winter 1996



MOBILITY OPTIMIZATION

The anticipated use of the model is for situations when the given airlift resources are
insufficient for making all the required deliveries on time. On the other hand, if there are
enough resources for complete on-time delivery, then the model's secondary objective
function is to choose a feasible solution that maximizes unused aircraft. The motivation of
the secondary objective is that if the available aircraft are used as frugally as possible,
while still meeting the known demands and observing the known constraints, then the
mobility system will be as well prepared as it can be for unplanned breakdowns and
unforeseen requirements, such as an additional nearly simultaneous regional contingency.

2.2.2 Constraints
The model's constraints can be grouped into the five categories: demand satisfaction,

aircraft balance, aircraft capacity, aircraft utilization, and airfield handling capacity.
* Demand Satisfaction Constraints: The cargo demand constraints attempt to

ensure for each unit that the correct amounts of cargo move to the required desti-
nation within the specified time window. The passenger demand constraints do
the same for each unit's personnel. The demand constraints have elastic variables
for late delivery and non-delivery. The optimization will seek to avoid lateness
and non-deliveries if it is possible with the available assets, or to minimize them
if not.

* Aircraft Balance Constraints: These constraints keep physical count of aircraft by
type (e.g., C17, C5, C141, etc.) in each time period. They ensure that the aircraft
assets are used only when they are available.

* Aircraft Capacity Constraints: There are three different kinds of constraints on
the physical limitations of aircraft-troop carriage capacity, maximum payload,
and cabin floor space-which must be observed at all times.

" Aircraft Utilization Constraints: These constraints ensure that the average flying
hours consumed per aircraft per day are within AMC's established utilization
rates for each aircraft type.

• Aircraft Handling Capacity at Airfields: These constraints ensure that the num-
ber of aircraft routed through each airfield each day is within the airfield's han-
dling capacity.

2.3 Assumptions
Some major assumptions of the model are listed below. These are known to be sacri-

fices of realism, but such assumptions are needed in modeling most real-world problems
due to the limitations of data availability or the need to avoid computational intractability.

* Airfield capacity is represented by Air Force planners by a measure called
Maximum-on-Ground (MOG). The literal translation of MOG as the maximum
number of planes that can be simultaneously on the ground at an airfield is
somewhat misleading, because the term MOG means more than just the number
of parking spaces at an airfield. In actuality, airfield capacity depends on many
dimensions in addition to parking, including material handling equipment,
ground services capacity and fuel availability. Some Air Force planners use the
terms parking MOG and working MOG to distinguish between parking space lim-
its and servicing capability. Working MOG is always smaller than parking MOG,
and is the only MOG for which we have data. Working MOG is an approximate
measure because it attempts to aggregate the capacities of several kinds of ser-
vices into a single, unidimensional figure. Disaggregation of airfield capacity into
separate capacities for parking spaces and for each of the specific services avail-
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able would yield a more accurate model. Unfortunately, data are not currently
available to support this modeling enhancement.

* Inventoried aircraft at origin and destination airfields are considered not to affect
the aircraft handling capacity of the airfield. This assumption is not strictly valid
since an inventoried aircraft takes up parking space, but, as noted, working MOG
dominates parking MOG.

* Deterministic ground time: Aircraft turnaround times for onloading and offload-
ing cargo and enroute refueling are assumed to be known constants, although
they are naturally stochastic. This ignores the fact that deviations from the given
service time can cause congestion on the ground. To offset the optimism of this
assumption, an efficiency factor is used in the formulation of aircraft handling
capacity constraints to cushion the impact of randomness. Better handling of sto-
chastic ground times is a subject of ongoing research.

Other approximations of reality employed in the model for computational tractability
are aggregation of airfields, discretiztion of time, and continuous decision variables. A
limitation on the scope of the model is that it considers only inter-theater, not intra-theater
deliveries.

3. OPTIMIZATION MODEL
This section gives a mathematical formulation of the conceptual optimization model

discussed previously in Section 2.2.
The airlift optimization problem is formulated as a multi-period, multi-commodity

network-based linear program with a large number of side constraints. Two key concepts
are employed in the model. The first is the use of a time index to track the locations of air-
craft for each. time period. The modeling advantages of knowing when an aircraft will
arrive at a particular airfield are that it enables us to model aircraft handling capacity at
airfields and to determine unit closures (i.e., the time when all of a unit's deliveries are
completed). This approach is in contrast to the THRUPUT model of Yost [1994], which
takes a static-equilibrium or steady-state approach.

The second key concept is model reduction through data aggregation and the
removal of unnecessary decision variables and constraints prior to optimization. This is
necessary as the airlift problem is potentially very large. Without this model reduction
step, the number of decision variables would run into the millions even for a nominal
deployment. The unnecessary decision variables and constraints are removed by exten-
sive checking of logical conditions, performed by GAMS during model generation. (See
Lim [1994] for details.)

3.1. Indices
u indexes units, e.g., 82nd Airborne
a indexes aircraft types, e.g., C5, C141
t,t' index time periods
b indexes all airfields (origins, enroutes and destinations)
i indexes origin airfields
k indexes destination airfields
r indexes routes
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3.2 Index Sets
Airfield Index Sets

B set of available airfields
IcB origin airfields
KcB destination airfields

Aircraft Index Sets

A set of available aircraft types
AbulkCA aircraft capable of hauling bulk-sized cargo
AovergAbulk aircraft capable of hauling over-sized cargo
AoutgAover aircraft capable of hauling out-sized cargo

Bulk cargo is palletized on 88 x 108 inch platforms and can fit on any milatary aircraft
(as well as the cargo-configured 747). Over-sized cargo is non-palletized rolling stock: it is
larger than bulk cargo and can fit on a C141, C5 or C17. Out-sized cargo is very large
non-palletized cargo that can fit into a C5 or C17 but not a C141.

Route Index Sets

R set of available routes
RaCR permissible routes for aircraft type a
RabCRa permissible routes for aircraft type a that use airfield b
RaikCRa permissible routes for aircraft type a that have origin i and destination k
DRcR delivery routes that originate from origin i
RRkCR recovery routes that originate from destination k

A delivery route is a route flown from a specific unit's origin to its destination for the
purpose of delivering cargo and/or passengers. A recovery route is a route flown from a
unit's destination to that unit's or some other unit's origin, for the purpose of making
another delivery. Since recovery flights carry much less weight than deliveries, the recov-
ery routes from k to i may have fewer enroute stops than the delivery routes from i to k.

Time Index Sets

T set of time periods
TuarCT possible launch times of missions for unit u using aircraft type a and

route r

The set Tuar covers the allowed time window for unit u, which starts on the unit's
available-to-load date and ends on the unit's required delivery date, plus some extra time
up to the maximum allowed lateness for the unit.
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3.3 Given Data
Movement Requirements Data

MovePAXik Troop movement requirement for unit u from origin i to destination k
MoveUEuik Equipment movement requirement in short tons (stons) for unit u

from origin i to destination k
ProBulku  Proportion of unit u cargo that is bulk-sized
ProOver u  Proportion of unit u cargo that is over-sized
ProOutu  Proportion of unit u cargo that is out-sized

Penalty Data

LatePenUEu  Lateness penalty (per ston per day) for unit u equipment
LatePenPAXu  Lateness penalty (per soldier per day) for unit u troops
NoGoPenUE u Non-delivery penalty (per ston) for unit u equipment
NoGoPenPAX u Non-delivery penalty (per soldier) for unit u troops
MaxLate u  Maximum allowed lateness (in days) for delivery
Preserveat Penalty (small artificial cost) for keeping aircraft type a in mobility

system at time t
Cargo Data

UESqFtu  Average cargo floor space (in sq. ft.) per ston of unit u equipment
PAXWtU Average weight of a unit u soldier inclusive of personal equipment

Aircraft Data

Supplyat Number of aircraft of type a that become available at time t
MaxPAXa Maximum troop carriage capacity of aircraft type a
PAXSqFtua Average cargo space (in sq. ft.) consumed by a unit u soldier for air-

craft type a
ACSqFt a  Cargo floor space (in sq. ft.) of aircraft type a
LoadEffa Cargo space loading efficiency (<1) for aircraft type a. This accounts

for the fact that it is not possible in practice to fully utilize the cargo
space.

URatea Established utilization rate (flying hours per aircraft per day) for air-
craft type a

Airfield Data

MOGCapb t  Aircraft capacity (in narrow-body equivalents) at airfield b in time t
MOGReqa b  Conversion factor to narrow-body equivalents for one aircraft of type

a pat airfield b
MOGEffbt MOG efficiency factor (<1), to account for the fact that it is impossi-

ble to fully utilize available MOG capacity due to randomness of
ground times
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Aircraft Route Performance Data

MaxLoadar Maximum payload (in stons) for aircraft type a flying route r.
GTimeabr Aircraft ground time (due to onload or offload of cargo, refu-

eling, maintenance, etc.) needed for aircraft type a at airfield
b on route r

DTimeabr Cumulative time (flight time plus ground time) taken by air-
craft type a to reach airfield b along route r

FltTimear Total flying hours consumed by aircraft type a on route r
CTimear Cumulative time (flight time plus ground time) taken by air-

craft type a on route r
DaysLateUar t  Number of days late unit u's requirement would be if deliv-

ered by aircraft type a via route r with mission start time t

3.4 Decision Variables
Mission Variables

XUart Number of aircraft of type a that airlift unit u via route r
with mission start time during period t

Yart Number of aircraft of type a that recover from a destination
airfield via route r with start time during period t

Aircraft Allocation and De-allocation Variables

Allotait Number of aircraft of type a that are allocated to origin i at
time t

Releaseait Number of aircraft of type a that were allocated to origin i
prior to time t but are not scheduled for any missions from
time t on

Aircraft Inventory Variables

Hait Number of aircraft of type a inventoried at origin i at time t
HPakt Number of aircraft of type a inventoried at destination k at

time t
NPlanesat Number of aircraft of type a in the air mobility system at time t

Airlift Quantity Variables

TonsUEuart Total stons of unit u equipment airlifted by aircraft of type a
via route r with mission start time during period t

TPAXuart Total number of unit u troops airlifted by aircraft of type a
via route r with mission start time during period t

Elastic (Nondelivery) Variables

UENoGouik Total stons of unit u equipment with origin i and destination
k that is not delivered in the prescribed time frame

PAXNoGouik Number of unit u troops with origin i and destination k who
are not delivered in the prescribed time frame
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3.5 Formulation of the Objective Function
Minimize

EE Ej E LatePenUEk *DaysLate~n * TonsUE~r
U a rERa teTua

+ EE E E LatePenPAX *DaysLateua * TPAX~r
u a reRa teTa,

+ EEE (NoGoPenUE * UENoGoik + NoGoPenPAXu * PAXNoGouk)
U i k

+ E E Preserveat * NPlanesat
a t

The DaysLateuart penalty parameter has value zero if t+CTimear is within the pre-
scribed time window for unit u. Thus, the first two terms of the objective function take
effect only when a delivery is late. The third term in the objective function corresponds to
cargo and passengers that cannot be delivered even within the permitted lateness. Late
delivery and non-delivery occur only when airlift assets are insufficient for on-time deliv-
ery.

The reason for including elastic variables that allow late delivery and non-delivery is
to ensure that the model produces useful information even when the given assets are
inadequate for the given movement requirements. The alternative of using an inelastic
model (i.e., a model with hard constraints that insist upon complete on-time delivery) is
inferior because it would report infeasibility without giving any insight about what can
be done with the assets available.

A useful modeling excursion that is made possible by the elastic variables is to vary
the number of time periods. As the horizon is shortened, it is interesting to observe the
increase in lateness and non-delivery.

As noted, the model's anticipated use is in cases when the airlift assets are insuffi-
cient for full on-time delivery. In the opposite case, the model will be governed by the
fourth term of the objective function, which rewards asset preservation for the reasons
given in Section 2.2.1.

Some care must be taken in selecting the lateness and non-delivery penalties and the
aircraft preservation rewards to ensure consistency. Late delivery should be preferred to
non-delivery. The weights will be consistent with this preference provided the late penal-
ty (per ston per day) is less than the corresponding non-delivery penalty (per ston) divid-
ed by the maximum allowed lateness (in days).

3.6 Formulation of the Constraints
As noted in the conceptual model, there are five categories of constraints. Their

mathematical formulations are as follows.
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3.6.1 Demand Satisfaction Constraints
There are four different kinds of demand constraints, corresponding to troops and

the three classes of cargo (bulk, over-sized and out-sized). Separate constraints are
required for the different cargo types to ensure cargo-carrier compatibility. For example, a
carrier of over-sized cargo cannot be used to carry the larger out-sized cargo. On the
other hand, it is possible to use a carrier of out-sized cargo to carry over-sized cargo. The
model accounts for this asymmetry.

The demand constraints also account for the desired delivery time-windows by use
of the index sets Tuar and the lateness parameters DaysLateuart.

Demand Satisfaction Constraints for All Classes of Cargo:

E E E TonsUEart + UENoGouik = MoveUEuik V u,i,k: MoveUEUk>O
aEAbul rERa, tET r

Demand Satisfaction Constraints for Out-Sized Cargo:

E E E TonsUEar + UENoGouk > Pr°Outu * MoveUEUik
aEAou rERaa tET r

V u,i,k: MoveUEujk>0

Demand Satisfaction Constraints for Over-Sized Cargo:

E_ E E_, TonsUEua, + UENoGouik > (ProOveru +ProOutu) * MoveUEuik
aeAo, rERaik tCT.

V u,i,k: MoveUEUik>0

Demand Satisfaction Constraints for Troops:

E E E TPAXar + PAXNoGouIk = MovePAXik V u,i,k: MovePAXik>O
a reRai tET r

3.6.2 Aircraft Balance Constraints
There are five kinds of aircraft balance constraints enforced for each aircraft type in

each time period. At origin airfields, they ensure that the number of aircraft assigned for
delivery missions plus those inventoried for later use plus those put in the released status
equal the number inventoried from the previous period plus recoveries from earlier mis-
sions and the new supply of aircraft that is allocated to the origin.

The meaning of releasing, or de-allocating, an airplane in period t is that it is not flown
on any missions from period t through the end of the horizon. In practice, the analyst can
interpret a release in the model's solution in a variety of ways. It can mean, as in the case
of the civilian CRAF aircraft, that the plane is literally sent back to its owner, but not nec-
essarily. The aircraft can also be kept in the mobility system, available as a replacement in
case of breakdowns or for unforeseen demands.

The second kind of aircraft balance constraints concerns destinations. They are simi-
lar to the first kind except releases are not allowed and the roles of delivery and recovery
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missions are reversed. The third kind of aircraft balance constraint ensures that if any
new planes become available in period t, they are allotted appropriately among the ori-
gins. There is a potential gain in efficiency to allow the optimizer to make these allocation
decisions, rather than relying on the user to preassign them to origin airfields. The fourth
type of aircraft balance constraints is a set of accounting equations for defining the
NPlanesat variables based on cumulative allocations and releases.

Aircraft Balance Constraints at Origin Airfields:

E EXuart + Hait + Releaseait = Ha,t_i + Allot. ,
u r EDR,

+ 1 ]i ar' V a,i,t
rERai tl+[CTime_]=t

where [CTimear] is CTimear rounded to the nearest integer.

Aircraft Balance Constraints at Destination Airfields:

E Yart + HPakt = HPakt_, + E E E Xut, V a,kt
reRR, u rERak t'ETu

t+ [CTimej =t

Aircraft Balance Constraints for Allocations to Origins:
t t

, Allota t  E j SupplYat V a,t
t/=l i t'=l

This constraint is in the cumulative form, rather than in the simpler form iAllotit -
SupplYat, to allow aircraft that become available in period t to be put into service at a later
period.

Aircraft Balance Constraints Accounting for Allocations and Releases:
t t

NPlanest = EEAlltait' - E E Releaseait V a,t
ti= i t1=l i

The fifth and final set of aircraft balance constraints helps to correct the discretization
error that can result from rounding CTimear to [CTimear], the nearest integer, in the other
balance constraints. For example, suppose CTimear is less than half a day for some aircraft a
and route r. When this time is rounded to zero in the balance constraints of the route's ori-
gin and destination, these constraints unrealistically permit an unlimited number of mis-
sions per day on that route. Solving the model with this deficiency would yield overly
optimistic results.

One way to fix this problem would be to insist that CTimear be rounded up to a higher
integer. Then the model would be overly pessimistic, because it would rule out the possi-
bility of an aircraft flying two or more missions in a day even when this is possible. This
sort of problem is common in mathematical modeling whenever time is discretized. The
approach taken here is to enforce the following additional constraints, based on the
cumulative plane-days available.
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Cumulative Aircraft Balance Constraints:
t t t

E E garttl Xuartl + E Kartt, Yart, + E nait,

reRa t 1=l u rERa t H= a i t =l

t 
t

+ E HPa, E NPlanesatl V a,t
k t1=1 t1=1

t-t1+1 if t' <t< t +CTimear -1
Kartt! = ~ m 

r
imear if t>tl +CTime-1

The right-hand-side indicates the cumulative number of plane-days available for
type a aircraft up to day t. The left-hand-side accounts for all possible plane activities up
to day t, whether flying or inventoried. The inventory terms are straightforward. The
delivery and recovery terms work as follows: if a delivery initiated on day t' is completed
by the end of day t, then the entire time CTimear (which may be integer or fractional) is
included in the left-hand-side of the cumulative balance constraint for day t. On the other
hand, if a delivery initiated on day t' is not completed by the end of day t, then only the
time expended so far, t-t'+ 1, is counted in the day t constraint.

An experiment attesting to the value of the cumulative aircraft balance constraints is
described in Section 5.4. If the CTimear's were all integer, these constraints would be
redundant and could be omitted.

3.6.3 Aircraft Capacity Constraints
Troop Carriage Capacity Constraints:

TPAXuart < MaxPAXa * Xuart V u,a,r,t: tFTar

Maximum Payload Constraints:

TonsEuan + PAXWt * TPAX - MaxLoadar * Xurt V u,a,rt: teT~r

Cargo Floor Space Constraints:

PAXSqFt a * TPAXuar + UESqFt. * TonsUEar < ACSqFt a * LoadEffa * X .

V u,a,rt: teTar
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3.6.4 Aircraft Utilization Constraints
The aircraft utilization constraints ensure that the total flying hours consumed by the

fleets of each aircraft type over the planning horizon are within AMC's established
utilization rates [Wilson, 1985; Gearing et al., 1988]. These rates are meant to capture
spares availability, aircraft reliability, crew availability, and other factors. The utilization
constraints are formulated by comparing the flying hours consumed by an aircraft fleet in
delivery and recovery flights to the maximum achievable flying hours for the fleet
according to the utilization rate.

E 1timar E fuart + E FltTimear * Yart
U rER. teT.ur rERa t

E E URatea * NPIanesat Va
t

As an illustration of the above equation, consider a fleet of 5 aircraft of the same type
made available from day 11. If the utilization rate for this aircraft type is 10 flying hours
per aircraft per day and the horizon is 30 days, then the maximum achievable flying is
1000 hours (10 hours/plane-day x 20 days x 5 planes). This total may not be exceeded for the
whole fleet over the entire planning horizon, however, it is not unusual for a subset of
aircraft to exceed utilization rates over a subset of the horizon, particularly during the
early (surge) stage of a deployment.

3.6.5 Aircraft Handling Capacity of Airfields (MOG Constraint)
The aircraft handling constraints at airfields, commonly called MOG constraints, are

perhaps the most difficult to model. This is because of two complicating factors that
necessitate approximations. First, there is no airfield capacity data available that provides
separate accounting of parking spaces and all the various services (refueling, mainte-
nance, etc.). The MOG data provided by the Air Force is an approximation, attempting to
aggregate all these services. Thus, the units of MOGCapbt are an idealized notion of air-
field parking spaces (normalized to narrow-body sized aircraft), not a precisely defined
physical quantity.

The second complicating factor in modeling airfield capacity is the congestion caused
by the uncertainty of arrival times and ground times. A deterministic, time-discretized
optimization model cannot accurately treat events occurring within a time period. For
example, suppose the time period of the model is one day and an airfield has 20 landings
per day. How much congestion occurs depends on when the landings occur during the
day, a phenomenon not captured in the daily model. It is possible to attack these concerns
with stochastic modeling techniques, however, the existing simulation and optimization
models for air mobility have made very limited progress to date in this area [Morton and
Rosenthal, 1994]. The MOG efficiency factor MOGEff is introduced to cushion the effect of
not explicitly modeling uncertainty. The MOG constraints are formulated for each airfield
and time period as follows:
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(MOGReqab * GTimeabr / 24) * Xart,

u a rcRa t ET.

t +[ DlTmeabr] =t

+ E (MOGReqab * GTimeabr / 24) * Yart'
a reRa t1+[DTmebr]=t

< MOGEffbt * MOGCaPbt  V b,t

Dimensional analysis is useful for understanding these constraints. The right-hand-
side is in the units of narrow-body parking spaces, because MOGCapbt is in those units
and MOGEffbt is dimensionless. The first term on the left-hand-side accounts for airfield
capacity consumed by all delivery missions that pass through airfield b during period t.
The second term on the left does the same thing for recovery missions. The dimension of
MOGReqab is narrow-body parking spaces per plane, the dimension of GTIMEabr/24 is
days, and the dimensions of Xuart, and Yuart' are planes per day; thus, the MOG con-
straints are dimensionally balanced.

Aircraft inventoried at origin or destination airfields do not consume any MOG
capacity in the above formulation. This is not a mathematical limitation, but rather a
modeling choice taken because inventoried planes do not consume ground services. It
can be easily modified if data for "parking space MOG" and various "ground service
MOG's" become available.

4. PERFORMANCE
The performance of the optimization model is relatively fast. On an IBM RS6000

model 590 workstation with GAMS/OSL, it takes about 100 seconds to generate and an
additional 100 seconds to solve a sample problem with 20 units, 7 aircraft types, 17 air-
fields and 30 time periods. A 486/66 laptop computer running the same software on the
same problem takes about 28 minutes. After extensive variable and constraint reduction,
the sample problem has 11,516 decision variables, 6,970 constraints and 189,351 nonzero
coefficients. The data entry time for the sample problem is about one and a half hours.
Excursions from a base model run take considerably less time to prepare. In short, turn-
around time for the optimization model is significantly faster than simulation models
commonly used in the Air Force [Morton and Rosenthal, 19941.2

5. ANALYTIC INSIGHTS
We now describe some examples of modeling excursions and the resulting analytic

insights. The base case scenario, developed by the U.S. Air Force Studies and Analyses
Agency, notionally resembles a Desert Storm scenario. This is the same problem instance
whose dimensions (after model reductions) are given in the Performance section.
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5.1 Diversion of Ramstein-Riyadh Demand to Dhahran
In the base case scenario, there are twenty origin-to-destination demand pairs, but

they are dominated by the demand for airlifting two Army mechanized units from
Ramstein, Germany to Riyadh, Saudi Arabia. These two units combined account for
66,400 short tons (stons), or 48%, of all unit equipment to be moved. When the base case
is optimized, the given fleet delivers only 67% of the total unit equipment. The shortfall is
due entirely to 45,000 undelivered stons of Ramstein-Riyadh demand, and a critical con-
straint appears to be MOG limitations at Riyadh's airfield.

In one modeling excursion, we examine the effects on the airlift system of changing
the destination for one of the Ramstein-based mechanized units to Dhahran, Saudi
Arabia, which is 250 miles northeast of Riyadh and closer to Kuwait and Iraq. Re-opti-
mizing with this one change, the same fleet delivers 85% of all unit equipment, a dramat-
ic improvement from 67%. However, the shortfall of 20,000 stons of unit equipment from
Ramstein may still be a serious impediment to the Army's effectiveness, necessitating a
re-evaluation of the scenario's war plans or augmentation of the mobility system.

The graphs in Figure 1 show a summary of this modeling excursion over time. The
unit equipment demand profile has jumps at the required delivery dates (RDD's).
Cumulative delivery profiles are shown for the base case and the excursion. When the
demand curve is higher than the delivery profile, shortfalls occur. All passenger
demands, though not shown in the figure, are delivered on time in both cases.

5.2 Required-Delivery-Date Sensitivity
As a second excursion, after shifting some of the Ramstein demand to Dhahran, we

investigated the effect of changes in the required delivery date for the unit whose equip-
ment could not be delivered. With the given RDD, the total unit equipment delivered is
85%, as noted. If extra days are allowed, delivery increases as follows:

Extra Days Percent Unit Objective

Allowed Equipment Delivered Function Value

0 85% 12.45

2 88% 11.35

4 93% 10.13

6 99% 8.56

The maximum allowed lateness is four days in all these runs. However, around 99%
of all the deliveries made are on time.

5.3 Identifying Critical Resources
The overall performance of the air mobility system in our optimization runs can be

characterized as having three phases. During the first third of the thirty days modeled,
the system is airframe constrained. During the middle third (plus or minus a few days
depending on location), the system is airfield-capacity constrained. During the final third,
the system is in a sustainment phase with diminished demands. Neither airframes nor
airfield capacities are critical resources, and it is too late to deliver cargos that were unde-
livered earlier.
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After looking at Figure 1, one might disagree with the assertion that the mobility sys-
tem is airframe-bound in the first phase, because there are no significant shortfalls until
Day 16. This would be a mistake, however. In fact, all available aircraft are used to the
maximum from the earliest available-to-load date (Day 1) through Day 11 (when a large
portion of the military aircraft first become available), and the dual multipliers indicate
that additional airframe assets in the first phase would have high marginal value. This is
because if more aircraft were available earlier, then the optimization model would have
made more early deliveries to prevent the shortfalls that it foresees but cannot avoid later
in the middle phase.

1400

1200 "..................................md..............

deliveries with
1000 ................................. ........ withut

dieliveries without
Ramstein-Dhahran

6 600 . .......... ........ ......... ..... ...............

400 ................... .................................

200 ........... .................................. ----.............

0.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (days)

Figure 1. A modeling excursion: after changing a Ramstein-based unit's destination
from Riyadh to Dhahran, the amount of undelivered cargo decreases from 45,000 stons
to 20,000 stons.

The middle phase of the airlift has more overall flights than the first phase, because
there are more aircraft in the system and demand is sufficient to keep them flying. The
middle phase also has a higher percentage of the shorter Germany-to-Saudi flights, as
compared to the longer CONUS-to-Saudi flights which predominate in the first phase.
With more flights and with shorter flights (which consume MOG at a faster rate per
plane), the mobility system becomes airfield-capacity constrained.

One might be tempted to conclude that adding more planes to the system during the
middle phase would be unproductive. This would also be a mistake: the dual multipliers
on aircraft consumption indicate that additional C17's and C5's would have high margin-
al value in the middle phase. Why does the optimization say that adding more planes
would help the mobility system when airfield capacities are already hitting their limits?

The answer is that the optimization advocates adding more efficient and versatile
planes. The meaning of efficiency for planes in a MOG-constrained environment is a high
ratio of cargo-delivered-per-plane to MOG-hours-consumed-per-plane. The more effi-
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cient a plane is in this sense, the more cargo it can deliver per day to a MOG-limited
destination. According to the data furnished by USAF/SAA and the evaluation of MOG-
hours consumed per plane at the most congested airfields in the model, the C17 is the
most efficient airframe for a MOG-constrained environment. The meaning of versatility in
the present context is having the ability to carry all three types of cargo (bulk, over-size
and out-size), as only the C17 and C5 can. The optimization determines that the mobility
system would perform better on the entire airlift if some more efficient and versatile air-
frames were made available during the middle phase.

5.4 Sensitivity to Time Discretization
The cumulative aircraft balance constraints were added to lessen the effects of time

discretization, as discussed in Section 3.6.2. The kinds of problems they are intended to
remedy arise, for example, if the cycle time of a route is less than half the length of a time
period. Without these constraints, such a cycle time would be rounded to zero and cause
unrealistic results.

To test the effectiveness of the cumulative aircraft balance constraints, the model was
run with time period lengths of 12, 24 and 48 hours. The resulting delivery profiles are
displayed in Figure 2. The idea of the test is that in the absence of discretization error
abatement measures, the error would increase as the time-step of the model gets larger.
Figure 2, however, shows close agreement among the delivery profiles, regardless of time
period length.
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Figure 2. Agreement among delivery profiles when time periods have length 12, 24
or 48 hours. Larger time-steps in linear programming yield smaller, easier-to-solve
models, but usually cause greater discretization errors. In this model, however, the
cumulative aircraft balance constraints effectively reduce discretization error.
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6. CONCLUSIONS AND FUTURE EXTENSIONS
The preceding analytic insights are typical of what that can be obtained through opti-

mization, but not from simulation. They represent but a small sample of the kinds of
questions that can be addressed with the optimization model. The model can give rela-
tively rapid response to questions relating to major mobility issues such as: 1) Are the
given aircraft and airfield assets adequate for the deployment scenario? 2) What are the
impacts of shortfalls in airlift capability? 3) Where are the system bottlenecks and when
will they become noticeable? This type of analysis can be used to help answer questions
about selecting airlift assets and about investing or divesting in airfield infrastructure.

The optimization model has some limiting assumptions which must be taken into
account when evaluating its results. As noted, they are: the approximation of airfield
capacity by a uni-dimensional MOG factor, deterministic ground times, the absence of
aerial refueling, and the rounding problems that are inevitably caused by the discretiza-
tion of time. The cumulative aircraft balance constraints help address the last difficulty,
by preventing overly optimistic or pessimistic results. Nevertheless, the one-day time
scale of the model that typically has been used to date cannot accurately represent what
happens at airfields during smaller time intervals.

In the Air Force analysis community, simulation has more acceptance than optimiza-
tion. The advantage of simulation over optimization is that it can more readily accommo-
date uncertainty and it can handle a higher level of detail, such as tracking individual
airplanes by tail number. The disadvantage is that it can only answer what-if questions,
not what's-best questions. Simulations also usually take longer to run. Air mobility simu-
lations used by the Air Force have had such long run times that the stochastic elements
are sometimes left out in order to make them run faster.

Ideally, optimization and simulation should be used in concert, with the optimization
being used to suggest mobility system configurations and modes of operation that are
then analyzed in detail by the simulation. Simulation runs, in turn, would suggest new
scenarios to be investigated by the optimization.

The optimization model described here is capable of being used in concert with other
Air Force planning models, or it can stand alone to provide rapid and realistic responses
in emerging conflict situations. Ongoing research is attempting to enhance the model in
the following ways:

* Currently the routes made available to the optimization model are entered manu-
ally, based on USAF/SAA analysts' judgement. An auxiliary model is under
development for generating routes [Turker, 1995]. Turker's research is also
addressing the issue of decreasing the effects of airfield aggregation (and associ-
ated unit aggregation).

" Stochastic programming methods are under investigation for incorporating ran-
dom ground times [Goggins, 1995].

" The Air Force is currently studying th& formation and transportation of global
reach laydown packages. The idea is to bring these packages to remote airfields to
quickly create or augment airfield capacity. A related optimization model is
addressing the optimal deployment of these mobile assets [Chapates, 1995].
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ENDNOTES
1 Submitted July 1995; In revised form December, 1995
2 Note added in final revision: More recent runs of the model have been with a larger data

set corresponding to a two-MRC scenario. This instance of the model contains 200
units, 7 aircraft types, 155 routes, and 47 time periods. The linear program has 161,000
constraints, 183,000 variables and 1.9 million nonzero coefficients. It took 30 minutes to
generate and 3 hours to solve with GAMS/CPLEX on the RS6000/590. On the advice of
CPLEX Optimization, Inc., the model was solved with the "barrier" and "nocrossover"
options; their assistance is gratefully acknowledged.
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ABSTRACT

Increasingly, the real-time management of complex operations are yielding to on-line
support of mathematical optimization models. More than simple decision support systems Towar a
that display data, these systems actually make decisions. In this article, we review actual oa
applications of such systems, highlighting the opportunities that await us. The article Unified
develops a general taxonomy for dynamic resource scheduling problems, and provides a
flexible notation system that synthesizes optimization and simulation. The goal is a flexible
optimization approach that bridges the gap between optimization and simulation. M odeling
INTRODUCTION Framework

Operations research has finally reached its golden era: the demand to solve complex fo r
problems efficiently is being met with the data and computing power needed to feed and RTim
solve our complex models. R a -im

We live in an age where we need to do more with less. We need to manage ever more
complex systems with fewer resources. The pressure for this comes from many sources: Logistics
global competition, soaring costs for fixed facilities (roads, airports), demand for human
resources, and pressure to reduce federal deficits. An enabling technology is our increasing Control'
ability to store and manipulate information. Centralized control of complex systems is
replacing decentralized operations. Modern sensing technologies (e.g. bar-coding) and
transmission technologies (fiber optics, satellites, cellular phone networks) have dramati-
cally expanded our ability to "know what is going on." At the same time, these technolo- Warren B. Powell
gies have presented a new challenge: What do we do with all this data? Department of

Operations research offers the technologies to transform data into decisions. However, Civil Engineering and
actual implementations of operations research have rarely survived the test of time. The Operations Research
excitement of initial successes, often accompanied by great fanfare, is often replaced with
the eventual realization that mathematical models still cannot compete with the multidi-
mensional skills of human decision makers. A theme of this paper is that very different
applications can be described with a common vocabulary.

In the past, we have tried to apply optimization methods by translating problems into
the vocabulary of linear programming. As users have struggled with this exercise, many
have turned to simple simulation methods, without any sense of optimality. By developing
a common vocabulary, it becomes possible to identify properties of these problems that can
be studied scientifically, and tackled using powerful mathematical solvers.

The paper begins in section 1 with a review of real applications of on-line optimization
models for control of logistics operations. These applications highlight the opportunities
that await those who undertake the challenge, but also help to focus our energies on the
challenges that continue to face the field of operations research, and the companies that
wish to use these technologies. Section 2 provides a taxonomy of resource scheduling prob-
lems that arise in logistics. Section 3 presents a flexible notation system for putting these
problems into a mathematical setting. Finally, section 4 discusses formulation issues, and
argues that an approximate solution of an accurate model is better than an optimal solution
of an approximate model.

1. EXAMPLES OF REAL APPLICATIONS
CASTLE Laboratory at Princeton University has been developing and implementating

real-time optimization models for a variety of logistics applications. A brief summary of
some recent projects provides an indication of what is now possible (names of companies
are withheld):

Short-haul routing and scheduling-A real-time scheduling system plans driver tours
for loads into and out of rail yards. The system is updated with each transaction, reopti-
mizing complete driver tours within five seconds (including data input and output) for
over 400 drivers. The tours must obey driver work rules, driver and customer preferences,
and pickup and delivery time windows on the loads. Because loads are short, individual
tours might cover as many as six or eight different loads within a work shift. However,
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customer orders are constantly changing, as is the status of each driver, requiring us to
constantly reoptimize complete tours. The problem is a real-time equivalent to the crew
scheduling problem.

Load matching for long-haul trucking-A real-time system matches drivers with
loads for a fleet of over 2,000 drivers handling 5,000 loads per week. Assignments of
drivers to loads must consider distance, time windows (service commitments), load priority,
driver hours, and driver preferences (in particular, the need to assign a driver to a load that
returns him home). An optimization model responds to each transaction (new loads,
changes in loads, changes in driver status) within five seconds. With long-haul loads, most
drivers are assigned to a single load, but some are assigned to tours of two loads. Users see
not just the driver tour as recommended by the model, but a list of alternatives ranked in
order of their impact on all driver assignments.

Driver/load management over a linehaul relay network-A tactical planning system
manages over 6000 drivers and 10,000 loads per week over a national linehaul relay net-
work. Using hourly updates, the system forecasts driver movements and loads over a four
day planning horizon, allowing planners to make decisions on what drivers to assign to
what loads, and when the loads should be moved so that drivers and loads remain
balanced at intermediate relays.

Tactical management of rail flatcars-A major railroad must optimize the reposition-
ing of its fleet of 10,000 flatcars to move intermodal trailers and containers over its rail
network. There are over 50 types of flatcars, each holding between one and eight of the
over 40 types of trailers and containers. The use of specific types of trailers and containers
is not uniform, and there is a benefit to getting certain types of flatcars to specific locations
to maximize the utilization of the flatcar (there is no point in sending in a flatcar that can
hold four containers to a location that has a low container volume but ships a lot of trail-
ers). The optimization model does not run in batch, but optimizes adaptively, adjusting to
real-time data transactions, but not necessarily solving to optimality between transactions.

Routing and scheduling for chemical distribution-A system has been implementing
for designing driver routes and schedules to deliver chemicals to customers which use the
product at varying rates. Some customers have small tanks, which need to be clustered
with other tanks to fully utilize the vehicle. The size of the load depends on the time the
vehicle arrives, which reflects current inventory and customer usage patterns. The routing
and scheduling system must form clusters, assign drivers, tractors and trailers to produce a
complete schedule. In addition, these tours must be formed over a two-three day planning
horizon. The optimization system receives real-time updates of all resources (drivers, trac-
tors and trailers) and customer usage patterns.

All of these applications share certain common themes. In each case, the project was
motivated by management's desire to improve operations and/or cut overhead.
Improvements were sought through lower operating costs, better service, and better
management/utilization of resources. In addition, all of the projects were initiated through
a combination of competitive pressures and the availability of data using new or recently
acquired information technologies.

All of the problems can be described as optimizing the use of resources to accomplish
tasks. In fleet management applications (truckload, rail) there may be large numbers of
resources with only a few types (three or four trailer types) or many types (50 types of
flatcars), but with relatively simple attributes. In others, resources are people with very
complex sets of attributes, and where often no two are alike. These resources must be
managed to satisfy tasks, and tasks can vary based on attributes (origin, destination, time
windows, equipment required) but also on the nature of the tasks (can one resource handle
one task, or can one resource, such as a flatcar, handle multiple tasks, such as containers).
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While it is possible to develop application-specific software, ultimately such systems
are difficult to maintain, and tend to be plagued by heuristics that do not evolve as the
problem changes. Our experience is that it is much more effective to start with a general
statement of the problem, and provide general tools through which application-specific
rules can be coded.

2. A TAXONOMY OF RESOURCE MANAGEMENT PROBLEMS
It is common when solving problems that arise in complex operational settings to

develop a set of procedures that are unique to a particular setting. Such an approach tends
to produce solution methods that can take advantage of the structure of a particular appli-
cation. At the same time, the resulting code is often difficult to maintain, and may be hard
coded to operational practices that may change in the future. The down side of this
approach is two-fold: First, it is often hard to see the "forest through the trees" in the sense
that while it is easy to design simple heuristics, it is harder to identify the important trade-
offs that lead to improved solutions. Second, as advances in optimization algorithms
progress, it is hard to incorporate these advances into the solution method.

We view our problems within the general framework of assigning resources to handle
tasks (in a way, this describes the entire field of operations research). Resources might be
drivers, tractors, trailers, flatcars, containers, locomotives and aircraft. Tasks represent the
movement of goods over space and time (by contrast, manufacturing represents the
transformation of goods from one type to another).

Our taxonomy, then, involves dividing problems in terms of the types of resources,
and types of tasks.

RESOURCE CHARACTERISTICS:
Homogeneous resources-All resources are identical. Two resources at the same point

in space and time can be equally used on the same task. Tractors and, in some cases,
trailers, are often modeled as homogeneous resources.

Heterogeneous resources-There are different types of resources which can handle
different tasks, with some cross substitution (if there is complete cross substitution, we can
model them as homogeneous resources-if there is no cross substitution, the problem can
be decomposed into a series of homogeneous resource problems). Heterogeneous
resources are labeled by a resource type (for example, a 45' trailer or a 53' trailer) which
does not change over time. A complex problem might be railroad rolling stock, of which
there are hundreds of different types.

Multiattribute resources-Some complex resources are not satisfactorily described by
a static categorization, but rather by a complex set of attributes, that may evolve over time.
The most common example is people (driver/crew scheduling) but other examples might
include aircraft, ships and locomotives (due to their complex maintenance needs).

RESOURCE LAYERING:
Single layer-Single layer resource problems assign a single resource to a task (for

example, a driver is assigned to pull a load, a taxi driver serves a passenger).
Multiple layers-It might be that different types of resources are needed to handle a

task. A pilot needs an aircraft to serve a flight. A driver needs a tractor and a trailer to pull
a load of freight.
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Resource layering is an issue that is largely ignored in most mathematical models. Of
course it takes a pilot and a plane to move cargo around the world, but the routing and
scheduling literature tends to focus on a single resource, which might be just the vehicle
operator (driver, pilot), or just the vehicle, with suitable approximations to capture the
presence of a human operator.

The other side of the equation is the tasks. The dimensions of a task include size, length
(distance covered/time required), spatial density and booking profile. More specifically:

TASK SIZE:
Pickup and delivery-Tasks represent small shipments, with typically 10 or more

fitting on a single vehicle.
Partial truckload-A single shipment might fill a vehicle, or it might be possible to fit

up to five on a single vehicle.
Truckload-A single task will fill a single vehicle.
Bulk-A single task might require two or more vehicles to handle all the freight. This

arises frequently in rail and global air logistics.

TASK LENGTH:
Short-A single driver can handle two or more tasks in a single shift.
Medium-Most tasks will consume an entire work shift for a driver.
Long-A task will span more than one work shift for completion.

SPATIAL DENSITY:
Many to many-Tasks go from many locations to many locations, with typically only

a few tasks originating or terminating in the same locations at a given point in time. This
arises commonly in truckload trucking, where loads are highly dispersed.

Few to many/many to few-Tasks originate or terminate in a few locations (such as
ports, air terminals or rail terminals), but the other end of the load might be at any location.

Few to few-Tasks might move between highly concentrated locations, creating large
flows of tasks moving between specific pairs of terminals. These situations arise in rail, as
well as the flow of drivers between hubs for less-than-truckload motor carriers.

BOOKING PROFILE:
Large prebooking times-The time between when a task is known and when it needs

to be served is large, implying that when a plan is put together, all the demands are known
in advance. These problems arise most frequently in pickup and delivery operations, fixed
"milk-run" operations and scheduled services.

No prebooking-Here, customers call in requests and expect immediate service. These
situations arise in some areas of transportation, but more commonly in emergency
situations where advance planning is not possible.

Mixed prebooking-The time from when a load is known to when it must be served
might be very long or very short, requiring the ability to plan quickly. At the same time,
customers who make their requests known well in advance expect a high level of service.
Many carriers struggle to provide guaranteed service for requests known well in advance,
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when they also have to do a substantial amount of short term planning in response to last
minute requests.

The last dimensions of resource scheduling problems in logistics cover how the tasks
are serviced operationally.

SERVICE RESPONSIVENESS:
Demand responsive-Transportation service is provided as demands arise. Examples

are taxis and truckload motor carriers.
Scheduled service-Service schedules are fixed, and demands have to adjust their

schedule to meet that of the transportation service. Most airlines and shipping companies
work on this format.

Mixed service-Often, demands are fairly predictable, providing an incentive to plan
some services in advance. However, last minute requests and sudden surges are better
served by providing a degree of demand responsive service. Railroads fall in this category
as does the Airlift Mobility Command.

CONSOLIDATION STRATEGY:
Point to point-Transportation service (full truckload) moves directly from origin to

destination. Personal taxi and limousine services work this way, as does most truckload
trucking.

Relay operations-A load may move from origin to destination through a sequence of
relays, often with a change of resources (most commonly drivers or crews, but this might
apply to railroads with a change in locomotives).

Pickup and delivery-Smaller shipments are moved from point to point as a vehicle
performs in-vehicle consolidation.

Transshipment-Here, goods are moved from one vehicle to the next to achieve addi-
tional economies of consolidation.

This taxonomy is quite broad, and encompasses problems ranging from classical pick-
up and delivery, to airline crew scheduling, to dynamic fleet management.

3. AN ALGEBRA FOR RESOURCE MANAGEMENT PROBLEMS
The problem faced by operations research specialists in logistics is one of translating very

complex problems, with a lot of application specific details, into the very general language of
linear programming. Thus, if we are faced with the problem of managing aircraft and crews
to move loads globally in response to national emergencies, with all the issues and
constraints that arise, we have to write code that translates this problem into a cost vector c,
constraint matrix A, and constraint vector b, producing an optimization model of the form:

min cx
x

subject to:

Ax = b

x>O
Once the problem is in this form, we can turn it over to powerful solvers that recognize

this type of problem statement. It is the thesis of this paper that we need a richer vocabu-
lary for logistics settings, that allows problems in logistics to be described in a more natural
setting, but is still general enough so that a wide range of problems in logistics can be tack-
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led using a common set of solvers. Our view is that problems in logistics consist of the fol-
lowing basic components: resources (drivers or crews, tractors, trailers, locomotives, air-
craft), tasks (goods to be moved from one location to the next) and facilities (terminals,
ports, relays, yards).

In this section we introduce the notation which is used to describe the problem
throughout the paper. Because the model is dynamic, we need to make decisions over a
number of time periods. Let T be the number of planning periods in our planning horizon.
We allow decisions to be made at T + 1 points in our planning horizon, which we refer to as
time indices t = 0, 1, ...,T. Time period t for t = 0,...,T-1 represents the interval [t,t+1) and
is of uniform length. Time indices and time periods are represented by the letters s and t.

THE NETWORK
We define the following network data:

C=the set of all physical terminals in the transportation network.
ij=travel time (in integer time periods) from city i to city j

ci=the cost of moving a resource from i to j

We use the letters i and j to index terminals in C.

Solving the DRSP means deciding which resources should move which tasks over the
transportation network. In making a sequence of such decisions over time, we are solving
the DRSP on a discrete-time, dynamic network which is generated by replicating the physi-
cal network at each time index. A node in this network is represented by (i,t) in space time,
and link (ij,t) represents the movement from (it) to (j,t+Tij), where Tij is the travel time from
i to j. Let ,max =mx'

i,jrC ij

as the maximum travel time in the transportation network; by assumption.

RESOURCES
To account for the resources moving through our dynamic network we define the fol-

lowing set for each i, j E C, t E T and s = 0,.. .,rmax-l:

Rjt(s) = the set of all resources that are currently scheduled to arrive to terminal j from
terminal i at time t+s.

A resource's attribute vector completely describes its state at any point on our space-
time grid. These attributes are used to determine the cost and feasibility of a potential
resource-to-task assignment. To simplify our notation we define for each t e T, j E C and
S = 0,.... 7max-1,

Rjt(S) = URij, (S)
iEC

as the set of resources currently scheduled to arrive at terminal j at time t+s. We can then
define:

R(S) = U U Aj (S)
s=O iEC

as the set of all resources in the network at time t. The set Rt is the set of resources r defined
over the entire population of resources.
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Because of the heterogeneity of resources, we must track each individual resource over
time. To this end, we define the following resource state vector:

a = {...,art, .... I

where
art = attribute vector of resource r E Rt at time t E T.

We refer to the kth element of a resource's attribute vector as art(k). The minimum elements
in the vector a is location, time of availability, and a unique label or identifier. Other ele-
ments might include hours of service, recent pay history, training or skill level and domi-
cile. It is also useful to group resources by common attributes, using an aggregation
function. Let A be the space of all possible attribute vectors, and let G be an aggregation
mapping:

G: A-A

where I A I < < 1A 1. Now let:
Ra =the number of resources with attribute vector a EA

TASKS
Similarly, to account for the tasks that need to be moved about our dynamic network

we define the following set for each i, j E C and t E T.
L° = the set of all tasks with origin terminal i and destination terminal j that first

become available at time t.
Lijt = the set of all uncovered tasks with origin terminal i and destination terminal j at

time t. Similarly, we define the set of all uncovered tasks in the network at time
t E T as ,= UU , t

iC jECC

As with resources, we assign an attribute vector for each task:
b t = { .... bit,...}I

= attribute vector of task 1 e Lt at time t E T where bt is the vector of attributes for task 1
at time t.

DECISION VARIABLES
We can now present the notation that is used in the recursive formulation of the DRSP.

First we define our decision variables. For each t e T, i, j e C, r E Rit(0) and 1 E Lt, we define

X t 4=i if resource r is assigned to cover task 1 at time t
10 otherwise

Notice that we have restricted resource assignments to tasks available at the resource's
current terminal. The movements of unassigned resources (i.e., repositioning movements)
arise naturally out of scheduled resource assignments. Hence, we define for each t E T, i,
j E C and r e Rit (0)

Yrt=1 if resource r is assigned to move empty to j at time t

0 otherwise
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For notational clarity we define the vectors of resource assignments and repositioning
movements as

and X, = {*...Xrit ....

respectively Yt ={..Ydt .... }

To record the coverage of tasks we define for each t e T, i, j e C and I e Lijt the integer
variable zit by

Z=t Xr
l
t

Clearly z1t=l if task 1 is first covered during period t and z1t=0 otherwise. For notational
convenience we define the variables 21t by

t-1z-1, =, z,
which record whether or not a task has been covered in any time period preceding the
current.

SYSTEM DYNAMICS
It is convenient to describe our collection of resources and tasks as an abstract

"system". We denote the "state" of the system at time t e T immediately prior to the knowl-
edge of the decisions in x, and Yt by St. The state of the system is described by the sets of
resources

St = {(Rt,at),(Lt,bt)}

Our state variable consists of the set of resources Rt, the attributes of these resources art,
r e Rt, the set of uncovered tasks Lt, and the attributes of these tasks, bt, 1 e Lt. SO/ L0 and R0
are required as input data.

To keep our system state variable current, we must update it after each time period has
passed and the accompanying set of decisions have been implemented. We can describe a
system state variable update in more detail using the algebra which we have developed.
We define operators A and B to update the resource and task attribute vectors, respectively
An update of S, may then be phrased in terms of these operators, where we suppose that
we have just fixed xt and Yt at their optimal values. That is,

at+1 = A(xtyt,at,bt)
and

bt+1 = B(bt,xt, 2t)

The A operator is used to update the resource attribute vectors. The operation of A on
xt, Yt, at and b t to produce at+ 1 is really a sequence of actions that depends on the specifics

of the individual problem. The B operator similarly updates the task attribute vector b.
Similarly, we define operators R and L to update the sets of resources and tasks. Given

at, bt, xt, Yt, we can define:
R: Rt--*Rr+1
L: Lt-*Lr+1
The operators A, B, R and L are intended to encompass completely general rules gov-

erning the evolution of the state of the system. They are highly application specific and do

Page 76 Military Operations Research, Winter 1996



TOWARD A UNIFIED MODELING FRAMEWORK

not, in a direct way, affect the optimization procedures. Though these operations, we are
trying to merge the strengths of simulation and optimization.

THE OBJECTIVE FUNCTION
We complete our notation system by defining the cost and reward parameters which

are used to evaluate each resource assignment:
C = {.... Cii, ... }I

= the cost of repositioning a resource from location i to location j (this can be
made time dependent if necessary)

h(a,b) = {...,h(art,bit) ... I
= the vector of costs of assigning a resource with attributes art to cover task 1 e Lt

beginning during period t, i, j E C.
r I .... rlt ... -I

- the vector of rewards received for begining task 1 E Lt during time period t, i, j E C.
The cost vector c captures traditional transportation costs from moving over space and

time (this includes holding in inventory). The function h captures application-specific costs
that depend on the specifics of the resource and task attribute vectors. Some of these costs
might be real, and others might represent artificial bonuses and penalties designed to
encourage or discourage specific behavior. While not very rigorous, these "soft costs" are a
part of every application.

To develop an objective function, first define:

gt(xt,Yt,Zt,St) = rtxt - ht(at,bt)xt - ctyt
= the net 'profit' from the decisions made at time t.

Our problem is to determine x, y and z to solve:

max , (x,,z,S t ) (1)
xt'y1'zt teT

It is possible, in principle, to solve this as a large scale optimization problem. If the prob-
lem is relatively simple, it might reduce to a network or a multicommodity network flow
problem. For many applications, the attribute vector a and the updating process A is sufficient-
ly complex that a column generation method is needed. Complex work rules and other opera-
tional concerns can be built into the logic for generating possible schedules for a resource.
These schedules become the columns of a set partitioning model, which can be solved with
linear programming. Such techniques have been effectively applied to airline crew scheduling
(an excellent review of these techniques can be found in Desrosiers et al. [2]). There are several
problems with these approaches. First, they are not well suited to handling forecasting uncer-
tainties. Second, they perform very poorly in the face of long planning horizons.

An alternative approach is to express the problem using a recursive formulation.
G, (S,) max g, (x,, y,, z t ) +"- r+ (S,,,

xt ,Y1,z1

- the best net profit from all decisions made in the interval [t,T].
In the traditional language of dynamic programming, Gt+1 is the value function of our

optimality recursion. We define GT+ 1 = 0. We may then break the DRSP into a sequence of
easier subproblems. By Bellman's "principle of optimality", we know that solving such a
sequence of subproblems will provide us with the same solution in the end as solving the
original problem. Specifically, the subproblem to be solved at each time index t, is as follows:

max g,(xy,,z,,S,)+G,+1(S,+l
xt ,Y1 ,Zt
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with system dynamics given by:

at+, = A(x,,y,,at,b,)

bt+1 = U(btqxt, it)

Rr+I = R(R,, a,+,)

t+1 = L(L, xt,at+,bt+1)
It is well known that in practice this system is intractable. However, if we replace Gt(S t)

with a careful approximation, the problem can become quite easy to solve. Furthermore, it
is quite easy to incorporate a very high level of detail. While the resulting solution may not
be optimal, in the sense of solving an approximate problem, we will be better able to solve
a more accurate model of the real problem.

4. FORMULATION STRATEGIES
The problem with equation (1) is that for most applications, the problem is intractably

large. Furthermore, uncertainty in the data brings into question the meaning of such a
global "optimum." In our experience, it is not uncommon that a mathematical, global opti-
mum solution is unimplementable (because it assumes a level of data accuracy that is not
achievable). Furthermore, such global optima are only possible for deterministic models.
Experimental results in Frantzeskakis and Powell (1990) and Powell and Cheung (1994)
show that optimal solutions of deterministic models can provide significantly worse results
than an approximate solution of a stochastic model. The results of this research provides
supporting evidence to the following fundamental hypothesis of modeling:

An approximate solution to a more accurate model is better than an exact solution to an
approximate model

Practitioners have realized this for many years. Not uncommonly, highly heuristic sim-
ulation models, such as the MASS program used by the Air Mobility Command, supplant
more powerful but less flexible linear programs. Simulation offers the analyst much greater
flexibility, but gives up in the process any possibility of finding even near optimal
solutions.

What is often missing from the basic modeling paradigm is the realization that simple
rules can provide near-optimal solutions. Furthermore, it is possible, using hierarchical
control strategies, to guide simple strategies toward a global optimum. Recently, for exam-
ple, Powell et al. (1995) developed a method that can be applied to large fleet management
problems with multiple equipment types and time windows. Classically formulated as a
large scale, multicommodity network flow problem with GUB constraints to handle time
windows (see Powell et al. (1995) and Magnanti and Simpson (1978)), it was shown that the
same problem could be solved much more easily from the perspective of optimal control of
queues. It is important in large, complex problems not to overreach the problem in the
pursuit of global optimality. Much more effective strategies can be developed by
decomposing the problem and solving sequences of smaller problems.

There are three dimensions to global formulations of complex problems that can each
be exploited to provide more efficient solution algorithms:

Spatial-It is possible to optimize over all decisions over all points in space, coordinat-
ing the activities in location i with activities in location j.

Temporal-It is possible to optimize decisions over all points in time, so that decisions
at time t are coordinated with decisions at time t' > t.

Organizational-Real decisions take place at several levels of an organization. It is
possible to combine these organizational levels to achieve a more global optimum.
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Optimizing globally over space requires a level of coordination that is not always war-
ranted. Many decisions can be made at one location without worrying too much about
decisions at other locations. At the same time, some coordination is required, and obvious
mistakes can be made if every location is allowed to work independently. In Powell et al.
(1995), a control variable plus dual information was communicated to each location. These
variables are adjusted globally based on up-dated information. This research produced a
spatial decomposition allowing each location to work independently, and yet still achieve a
solution close to a global optimum.

Temporal decomposition arises naturally in stochastic formulations of problems. The
ability to optimize across time periods is an artifact of deterministic models. Temporal
decomposition requires optimizing today using only approximate information about what
will happen tomorrow. The result of this approach is a much easier optimization problem.

Organizational decomposition provides explicit recognition to multiple levels of
decision making. Global optimization formulations assume a single decision-maker.

Organization decomposition implies a hierarchical structure. For example, decisions to
reposition aircraft from location to the next might occur at a central command level, while
the decision of what freight to put on an aircraft, or what pilot to assign, might be made
locally. Again, organizational decomposition can, in a theoretical sense, produce lower
quality solutions (in a theoretical sense), but hierarchical decisions make better use of
information available to different levels of decision makers, and which might not be
available to the computer.
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ABSTRACT

In this report, we describe our work in developing models, methodologies and simu-
lations for network optimization problems in the planning, analyzing and optimizing of
large scale (air) transportation networks with time window constrained routing and Modeling and
scheduling. Our research is motivated by certain problems encountered in the United
States military's strategic mobility analysis, in general, and specifically in Mobility Optim ization 0f
Analysis Support System (MASS) of the USAF's Air Mobility Command (AMC).

This work is performed within the framework of Semantic Control paradigm, a three- Mobility
layer supervisory hierarchical structure. In this context a new mathematical programming
model, called Network Optimization Mobility Analysis (NETO), for the mobility analysis Analysis:
system is formulated as a pickup-delivery vehicle routing and scheduling problem with
time-window constraints (PDPTW). In order to cope with the computational complexity Optimal
inherent in the PDPTW formulation, we have developed and implemented a novel algo-
rithm called SP-CGCE (set-partitioning formulation, column generation and column elim- Requirement
ination). The computational results indicate a promising and robust performance by this
solution algorithm. The problems tested/solved here involve many more nodes than simi-
lar problems previously attempted. The test results indicate that the SP-CGCE algorithm is Studies
at least twice as fast as currently available column generation-branch and bound schemes;
this increase in speed is due to the effectiveness of the column elimination process used
after the completion of the linear programming phase to obtain integer solutions. Fan Yang,

In particular, the focus of this report is the optimal requirement studies problem, where the Ervin Y. Rodin,
following question is addressed: "How many of what types of transportation assets are necessary S. Massoud Amin
to move cargo to the specified destinations, satisfying a particular desired closure schedule?"

Center for Optimization
1. INTRODUCTION and Semantic Control 2

The Center for Optimization and Semantic Control at Washington University in Department of Systems
St. Louis has been conducting research jointly with the Air Mobility Command of the Science and Mathematics
United States Air Force with respect to the Mobility Analysis Support System. In the past, Washington University
we have solved several large-scale, time-dependent, mixed variable, uncertain and com-
plex problems encountered in aerospace and decision support domains [1-5,8,9] using the
Semantic Control paradigm (see below). The Center researchers approach the solution of
such problems using a judicious combination of classical mathematical methodologies
(mathematical programming, computational geometry, control theory, game theory,
stochastic, etc.), together with Artificial Intelligence paradigms such as Planning, Search,
Fuzzy System Theory, Neural Networks, Rule Based Systems, and Logic Programming
[8-9]. Our approach is based on the Semantic Control paradigm-a three-level hierarchical
structure (Figure 1-1) consisting of:

* an Identifier, which processes the list of requirements, known as the time-phased force
deployment data/document (TPFDDs3), and interprets the available information;

" a Goal Selector, which generates and evaluates several plans; and
" an Adapter, which implements the optimal plan.
For example, the Identifier module consists of neural networks for processing, pattern

recognition and optimization of TPFDDs. Once trained, neural networks identify require-
ments and consequently recommends assignment and allocation of aircraft in order to
deliver those requirements. Currently, given a requirement containing:

i) a commodity code (such as outsize, oversize, bulk, passengers),
ii) an onload-offload region, and
iii) the percent of the total requirement to be moved,
the neural network recommends the appropriate assignment and allocation of aircraft

to deliver that requirement.4 The neural network module serves as a "pattern recognizer"
in order to reduce the complexity; in addition to this, we are currently developing a "fuzzy
model" of the air transportation which incorporates leeways in the constraints and goal.
This should prove very useful since several quantities such as MOG (maximum on
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DISTURBANCE

INPUT OUTPUT
PLANT

SEMANTIC CONTROL SYSTEM CONTROL

DESIGNER

CONTROL
I i LAW

SYSTEM GOAL CONTROL
IIDENTIFIER SELECTOR ADAPTER CONTRO

Figure 1-1: A semantic control system consists of a System Identifier, a Goal Selector,
a Control System Adapter, and one or more control systems/laws.

ground) are not crisp variables. This approach admits such uncertainties as part of the
model, thus reducing labor-intensive post-optimality sensitivity analysis. These issues will
not be discussed further in this report. We refer the interested reader to [8,9]. This report
deals mainly with algorithm development and simulation of exact mathematical program-
ming and optimization methodologies (cf. [6] and [101) for the Goal Selector module of the
Semantic Controller. More specifically our objectives in this report are:

1) reviewing existing mobility analysis models and addressing their various limitations,
2) presenting the new mobility analysis model NETO formulated as a PDPTW problem,
3) discussing our solution algorithm (SP-CGCE) and comparing its performance to

other published results,
4) providing a brief overview of the system implementation and related issues,
5) giving an example of the optimal requirements studies problem, and
6) concluding with a discussion of other relevant problems addressed by this approach

as well as related open problems.
This report is divided into six sections:
- Section 1 and subsections 1.1 through 1.3 present background information on the

strategic mobility analysis and limitations of current simulation and mathematical
models.

- Section 2 discusses the system architecture and the components of our model NETO.
- Section 3 focuses on the mathematical formulation, algorithmic details, and perfor-

mance analysis. The mathematical model for our formulation is given in more detail
in Appendix B.

- Section 4 presents system implementation and gives an example of the optimal
requirements studies problem.

- Section 5 discusses other related problems and defines future work.
- Section 6 concludes with a brief summary.

1.1.STRATEGIC MOBILITY ANALYSIS: BACKGROUND [71
Various objectives of strategic mobility analysis are grouped into three broad planning

categories:
* Resource Planning: long-range deployment planning and programming.
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" Deliberate Planning: mid-range deployment planning that encompasses the develop-
ment and analysis of operational plans.

* Execution Planning: including both the short-range crisis action planning before an
engagement begins and the continuing planning and replanning as execution
proceeds.

There are two fundamental questions involved in the above planning categories as well
as in all other planning activities:

1) How to accomplish the objectives (and to what degree) given the resources?
2) Given the objectives, what are the minimum resources required to accomplish them

and how to do so?
In particular Resource Planning encompasses program development and related policy

research that is conducted in the planning, programming, and budgeting system (PPBS).
Although mobility studies in resource planning may presume specific theater scenarios, the
analyses are collectively meant to conduct coordinated long-range resource planning for
total forces. These studies are generally of two types: capability assessments, which deter-
mine the force closure that can be supported by a given set of lift assets, and requirements
studies, which estimate the lift assets necessary to support a given force closure.

In capability assessments (the forward problem), a strategic mobility model is used to
assess how soon a particular set of transportation assets can effect theater closure of a partic-
ular set of forces, support resource, and resupply, given the constraints of scenario and cargo
priorities. Although capability assessments theoretically are one-shot uses of the model,
more runs are almost always needed to assess the implications of uncertainty. To explore
degrees of risk with a given force structure and operational objectives, the model may be
exercised numerous times with different versions of scenario assumptions.

In requirements studies (the backward problem) the following question is asked, "How
many of what types of transportation assets are necessary to move cargo to the specified
destinations, satisfying a particular desired closure schedule?" The results of the analysis
describe a set of transportation assets , or perhaps the required increments to a baseline set
of assets. Conducting this type of study with the currently available mobility models is nec-
essarily a tedious iterative process. At the Joint Staff, an important recent example of a
requirements study is the RIMS (Revised Intertheater Mobility Studies), which required over
400 MIDAS runs (Model for Intertheater Deployment by Air and Sea) between October 1986
and April 1989.

1.2. ANALYSIS PROCESS OF THE CURRENT MOBILITY MODELS
The models that are currently being used in the defense communities [7], such as

MIDAS (Model for Intertheater Deployment by Air and Sea, a Joint Deployment System
model, 1980), RAPIDSIM (Rapid Intertheather Deployment Simulator, 1974), TFE
(Transportation Feasibility Estimator, a Joint Operation Planning System), FLOGEN (Flow
Generator, an Air Mobility Command model), SEACOP (Strategic Sealift Contingency
Planning System, a Military Sealift Command model), MASS (Mobility Analysis Support
System, an Air Mobility Command model, 1980's), etc., all process data in a similar way.
Each model uses several inputs in the form of data files; all use similar algorithms to simu-
late the transportation system, and all produce similar outputs, e.g. delivery dates, utiliza-
tion rates, and delays/queues.

Typically, four files provide input for the simulation models: a requirement file, a
PREPO (prepositioning) file, a transportation resources file, and a scenario file. The model
then assigns cargoes to transportation assets according to certain rules, and simulates cargo
movement through the transportation system. All of the current models use the same solu-

Military Operations Research, Winter 1996 Page 83



MODELING AND OPTIMIZATION OF MOBILITY ANALYSIS

Input

Preproceeing
Merge Files

Aggregate Records
Modification I Prioritize Records

Compromising
Simulation

LP Optimization
Schedule Cargoes

Simulate Movement

Postprocessing
Prepare Output

Prepare Graphics
Check & Correct

Figure 1-2. The Analysis Process of the Current Mobility Models

tion technique (deterministic simulation) and basically follow the same steps to arrive at a
delivery profile. A model may undergo some or all of the following analysis tasks (Figure
1-2): merge files; aggregate records (by ports, route, ships, or cargo); prioritize records; select
models (i.e., air or sea for those with no chosen mode); schedule cargoes; simulate move-
ment; prepare textual output; prepare graphical output; check and correct.

As mentioned earlier, we were motivated by problems encountered in the Mobility
Analysis Support System (MASS). MASS is a family of analytical tools developed originally
by the Command Analysis Group at the headquarters, Military Airlift Command, Scott AFB,
Illinois, from the mid-1980's to the early 1990's. The Command Analysis Group (Studies and
Analysis Right now) is presently working under the Plans and Analysis Directorate at the
headquarters, Air Mobility Command. The MASS family consists of a variety of models to
aid in the analyses of the full spectrum of airlift operations from daily peacetime cargo
movement to full-scale global wartime movements such as Desert Shield/Storm.

MASS is a deterministic simulation model which directs aircraft through a network of
onload, enroute, offload, and recovery bases in order to deliver a set of requirements needed
to achieve some predefined scenario goal. MASS is capable of handling many diverse sce-
narios. An enroute base is an intermediate stop, normally for fuel or to change crews,
between an offload and onload base. A recovery base is visited after the offload for fuel
and/or crew change, in order to relieve congestion at the offload base. The recovery base is
where aircraft wait to be scheduled for their next mission.

The cargo requirements (TPFDD) contain cargo information or requirements such as
onload(origin), offload(destination), available date, required delivery date, size, weight and
nature of the cargo, etc. The set of cargo requirements given by TPFDD are taken as input,
based on the availability of aircraft, airfields, parking space, crew members and routes etc.,
MASS works through the entire airlifting operation, simulating onloading, offloading,
scheduling, routing, refueling, crew changing processes, generating a multitude of step by
step aircraft activities, cargo movement and delivery information. MASS also simulates the
impacts made by some anticipated/unanticipated changes in the airlifting system, such as
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increased number of aircraft, base closure, etc. It is an effective tool in that it offers a feasible
solution to the airlift problem; however, it does not address the backward problem directly
nor does it guarantee an optimal solution. In subsection 1.3 we describe the limitations of
current models in more detail.

1.3. LIMITATIONS OF CURRENT MODELS
Schank et al. ([7], pp. 39-50) from the RAND corporation provide a very comprehensive

review of strategic mobility models and analyses. The following limitations of the current
models are identified:

" All work in only one direction, accepting similar types of input data and producing
the same general information.

" None are optimal.

Current Models All work in One Direction: All major current mobility models are sim-
ulations or have major simulation components. They accept data on what has to be moved
(cargoes), what is prepositioned (PREPO), what transportation assets are available, and what
the assumptions are regarding timing and available infrastructure. They then assign cargoes
to transportation assets according to specific rules and simulate their movement through the
transportation system. Finally, all produce estimates of when units are delivered into the
theater and utilization rates of the transportation assets and facilities. All existing models use
this process, regardless of the decisions and objectives being addressed. All models basically
provide the closure profile for these forces, support units and resupply given these
transportation assets (forward problem).

This question may be appropriate for deliberate planning or execution planning analy-
sis, but it does not directly address the concerns of how many transportation assets are
required (important for resource requirement studies).

Strategic mobility analysis that addresses transportation asset requirements seeks the
best mix of transportation assets for achieving a desired closure profile for a given set of
forces, support units and resupply (backward problem). The unknown values in require-
ments determination are required inputs to existing models.

At present, therefore, analysis cannot directly answer the question of how many of each
type of transportation assets are required. They can only obtain an approximate solution by
multiple runs and trial and error.

The Solution Is Not Optimal: This laborious process, more art than science, certainly
does not provide "optimal" answers. In fact, a good deal of expertise is typically needed to
develop even a "good" answer to transportation force structure issues. This suggests that a
different modeling approach is warranted, one that moves away from simulations, or at
least from current simulation methods, to an approach that directly addresses force require-
ments questions.

Our mobility analysis system, NETO, accepts the same input file information as the
above models; however, it differs from them and other newer approaches (such as ADANS)
in its optimization and analysis capabilities. For example, all other models are geared
toward addressing the capability assessment (the forward problem) while unable to solve
the optimal requirements studies (the backward problem); NETO is capable of solving both
forward and backward problems. In the remainder of this report we focus precisely on the
commonly ignored optimal requirement studies problem. In what follows, we discuss our
approach to address the above limitations and to solve the optimal requirement studies
problem without the need for repeated runs.
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2. NETWORK OPTIMIZATION MOBILITY ANALYSIS SYSTEM
NETO consists of two interrelated components: a network optimization engine with time

window-constrained routing and scheduling based on integer and combinatorial optimization
methodology; and an analysis system with a information management system built upon
RDBMS and multimedia technology. RDBMS is not presented here; it falls outside of the focus
of this report. In this section, we will give an overview of the NETO system architecture,
describe the underlying labeled digraph and PDPTW. More detailed issues as well as the for-
ward problem, selection of cutting plane, column generation, column elimination, numerical
results and comparisons are reported in [6].

NETO SYSTEM ARCHITECTURE
The diagram and system hierarchy of NETO system architecture are shown in Figure

2-1. The input information is the same as the original input information (cf. Figure 1-1),
except that it might come from a database system. We will substitute the original simulation
process with our optimization system.

Preprocessing
Merge Files

Aggregate Records

Prioritize Records

Optimization
Operations Network

G(N, A): Optimization Network
PDPTW Routing & Scheduling

SP-CGCE: Optimization

Postprocessing

Prepare Output Data se
Prepare Graphics Kn ase
Check & Correct I

Figure 2-1. NETO System Architecture
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NETO SYSTEM COMPONENTS
The functions of the various components are described as follows:
Operations Network: The Operations Network is the original mobility operation informa-

tion represented in the form of transportation network consisting of all relevant data, such as
air bases, seaports, air routes, sea routes, onloads, offloads, enroutes, cargoes, transportation
vehicles, weather, scenario, movement requirements, logistics factors, and so forth. The
operations network is more than just a geographic network such as a map; it is a model of
the concept of operations, a database of the operation information.

Optimization Network G(NA): The Optimization Network is the Operations Network
represented in the form of a labeled digraph suitable for mathematical optimization purposes.
It has four types of nodes: starting nodes S, terminating nodes T, pickup nodes P'and deliv-
ery nodes P-. P' and P- forms a complete digraph P+ x P-. For S arcs only go from S to P'. For T
arcs only go from P- to T. Denote P=P'uP-, N=SuPuT, and A=SxP'uP'xP-uP-xT. Then we
can write the digraph as G(N,A).

In the mobility analysis system, the set of nodes S could be the home depots. The set of
nodes T could correspond to the recovery bases. P+ depicts the onload bases of require-
ments and P- describes their offload bases. A node in the optimization network may corre-
spond to many physical nodes in the operations network or vice versa; an arc in the
optimization network may correspond to several arcs/paths in the operations network and
vice versa. The labels contain various relevant information derived from the operations
network. Among these data are the cost of arc (i,j), time window constraints [ai,biJ,[ab j1]
(time intervals during which service is required; "service" meaning either pickup or deliv-
ery), the physical nodes that make up the arc (ij), etc. Some of the variables used in the
optimization network are:

di: load vector(volume, weight...) of cargo i at node i
[a,bi]: pickup time window at node i for movement/cargo i
[ao,bo]: time window for vehicle leaving the depot S
[a2,+1,b2,,+l]: time window for vehicle returning to the depot T
b: capacity of vehicle (load weight limit, volume,...)

tij: travel time from node i E N to node j e N
si: service time(pickup time or delivery time) at node i e N

Yi: the total load on the vehicle just after it leaves node i c N
Ti: time of start service at node i E N
To: arrival time at node i or time vehicle leaves the depot S
T2n~l: time vehicle returns to the depot T
RT: feasible route defining formulation
A complete list of terminology, definitions, notation, and symbols is given in Appendix

A at the end of this report. If the labels which store the transformed mobility information are
oriented, all mobility analysis will result in the same kind of optimization network.
Therefore if labels are not considered, the optimization network G(NA) is a topological rep-
resentation of the mobility system. An operations network is converted to an optimization
network through Network Construction.

Network Construction: This transforms an operations network into an optimization net-
work, taking into consideration such factors as routes, enroutes, cargoes, fuel, and other
information in association with the operations network. There are basically two tasks: build-
ing up the digraph topology G and computing the labels. For example, to construct the arc
from a pickup node i e P' to a delivery node n+i c P-, we may select the shortest path P with
the maximum length of any segment in P not exceeding a certain quantity in the operations
network. This could mean that a certain type of aircraft can make a sustained flight with
supported available refueling along the route.
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Reduced Optimization Network: The Reduced Optimization Network is an Optimization
Network reconfigured by tightening some excessively wide time windows and by eliminat-
ing as many as possible inadmissible arcs. By excessively wide time windows, we mean
those time windows that can be narrowed without changing the problem under considera-
tion. By an inadmissible arc we mean arcs which violate the constraints imposed upon the
mobility system, such as time window and vehicle capacity, etc. PDPTW [16,17,20,21] is the
underlying model for the optimization. The PDPTW model represents a vehicle routing and
scheduling problem where cargoes are to be picked up in specified origins (sources) within
given pickup time periods and to be delivered to desired destinations (sinks) within given
delivery time periods.

The PDPTW was first formulated based on a vehicle flow/multicommodity flow-based
nonlinear model (cf. [6]) and then reformulated into set-partitioning formulation and solved
by the Column Generation Column Elimination Algorithm (SP-CGCE). The Column
Generation Technique is based on the primal-simplex method to efficiently solve LP prob-
lems with a very large number of columns. It decomposes the original LP program into a
master problem and a subproblem. In our research we have decomposed the linear relax-
ation of the set partitioning formulation of the PDPTW into a shortest-path subproblem with
constraints. After the LP optimal is obtained by the column generation process, the Column
Elimination Technique has been employed to obtain integer optimality.

The optimization result has been utilized for various output analysis purposes, accord-
ing to the specific needs of the operation. In particular, the output data have been stored in
the database system for further analysis.

3. SP-CGCE SOLUTION ALGORITHM AND PERFORMANCE
The use of a set-partitioning formulation, with the column generation scheme for solv-

ing vehicle routing problem (VRP) and PDPTW problems has recently become more fre-
quent [11-21]. This is mainly because good alternative formulations for PDPTW problems
are not known and the linear programming relaxation of the set partitioning formulation
often yields a strong bound.

Other algorithms for solving PDPTW problems found in the literature [17,20] generally
take the following set-partitioning formulation, column generation, branch-and-bound
approach: these algorithms use a set-partitioning formulation and solve the relaxed set-
partitioning problem by column generation, where columns are generated when necessary
by solving a constrained Shortest Path Problem. Often the linear optimal solution is also
an integer solution. If it is not, the linear optimal solution offers a good lower bound for
the original set-partitioning problem, especially if some heuristic cutting planes are used.
Then this scheme resorts to branch-and-bound to find the integer optimal. Since the origi-
nal integer formulation is a set-partitioning formulation, branch-and-bound can not take
place on the decision variables directly, but rather, on the arcs/paths in the network. This
creates a tremendous number of subproblems/new nodes in the branch-and-bound
process and each of them corresponds to a subgraph of the original graph G(NA). Again,
column generation with the shortest path problem can be used to solve the subproblem on
the subgraph to linear optimality in order to get the lower bound for a further branch-and-
bound process.

In set-partitioning literature, the concept of identifying columns that would not con-
tribute to the optimal solution and thus be excluded from the optimizing process was first
mentioned in 1963 by Balinski [22]. Agarwal [23] applied this in 1989 for a VRP problem
based on a well known result in combinatorial optimization by Pierce in 1973, [24]; we call
this general concept column elimination.
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In this work, the column generation technique is used to solve the linear relaxation of the
SP to its linear optimal. The generating algorithm of the column generation is a constrained
shortest path problem which is solved by dynamic programming. Based on the information
of the reduced costs of the SP linear relaxation and its linear optimal value and an integer
optimal upper bound, a column elimination technique is developed to eliminate many non-
promising columns, thus reducing the size of the SP The reduced SP then can be solved
directly. By combining column generation with column elimination, we developed a solution
algorithm for NETO; furthermore, it is mathematically guaranteed that the reduced SP will
yield the integer optimal solution for the original problem (cf. section 3 of chapter 4 in [61).
The set-partitioning formulation of NETO is provided in Appendix B of this report. In subsec-
tion 3.1 we present a performance comparison of our SP-CGCE algorithm and previously
published results.

COMPARISON OF PERFORMANCE BETWEEN SP-CGCE AND OTHER
ALGORITHMS

The computational experiment was conducted on 99 different test problems; the prob-
lem size varied from ten pickup nodes to 120 pickup nodes, the number of feasible arcs
ranged from 180 to 23,198, the feasible routes range from 16 to 32,375. Numerical results [6]
indicate robust performance of the algorithm, especially the column elimination technique
which generally reduces the SP problem size by an order of 2. The test results indicate an at
least 100% speed increase over currently available column generation, branch-and-bound
scheme; this is due to the effectiveness of the column elimination process. Additionally, in
return for the sacrifice of some optimality , larger and more difficult problems can be solved
several times faster. The gap between the LP bound and the integer optimum for the 99
problems tested range from 0% to 3.7% with an average of 0.1%.

As discussed earlier, most other algorithms for solving the PDPTW problem solve the
LP to optimality and then utilize a branch-and-bound scheme to find the integer optimum.
Since some of the subproblems on the subgraph can be almost as difficult as the original
graph, solving one such subproblem might as well double the total solution time, and solv-
ing two might triple the time. This is evident in the numerical results given by Dumas[17] as
recompiled here in Table 3-1.

Table 3-1. Time Required to Solve LP and ILP to Optimality [171

Problem A19 A30 B30 C20 C30 D40 D50 D55

Z(LP) cpu time(sec) 92 47 112 28 111 66 95 204

Z(ILP) cpu time(sec) 95 51 114 51 169 172 215 313

In the above table, Z(LP) cpu time is the time required to solve LP relaxation and to
obtain the LP optimal solution Z(LP) via column generation. Z(ILP) cpu time is the time
required to solve the Integer Linear Program optimal solution Z(ILP) by branch-and-bound
using the LP optimal as a lower bound. The average ratio of Z(ILP) cpu time over Z(LP) cpu
time is 1.56.

The SP-CGCE algorithm developed for NETO, however, does not use branch-and-
bound to solve the problem to integer optimality after the LP optimal is obtained. It uses
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column elimination. From the computational results presented previously in this report and
in [6], some of which are recompiled here in Table 3-2, we can see that the column elimina-
tion (TCE) is a fraction of the time required to solve the LP optimal (TRts+TCG). The only
overhead involved is Tzu, the time required to find an upper bound of the integer problem
(ASP), which is also a fraction of the time needed to solve the LP optimal.

Table 3-2. Time Required to Solve LP and ILP Optimal(SP-CGCE)

Problem A36 B45 D60 D70 E40 E45

Z(LP) cpu time(sec) 257 1420 43 182 80 404

Z(ILP) cpu time(sec) 0 1 2 1 6 3

Z(LP) cpu time= TRts+TCG; (ILP) cpu time=TZu+TCE

In conclusion, the numerical experiments show that the column generation/
column elimination algorithm is indeed a powerful, flexible, stable and efficient one.
The column elimination procedure, in particular, is remarkably efficient. For more
details on performance evaluation and theoretical issues such as network reduction
(time-window tightening, arc elimination) and SP-CGCE algorithm development as
well as an up-to-date literature review of PDPTW and related subjects, we refer the
reader to [6].

4. NETO SYSTEM IMPLEMENTATION AND DEMONSTRATION
The first part of this section discusses the implementation of NETO, and the second part

provides an example for solution of the backward problem.

4.1 SYSTEM IMPLEMENTATION
To test the SP-CGCE algorithm and demonstrate the new model NETO, a prototype

system is implemented on a SunSparc Server 670MP workstation in a total 8181 lines of
source code in C. The Linear Programming and Integer Programming solver for the
SP-CGCE algorithm is built upon Cplex 3.0 Callable Library.® The user interface is
implemented using Xt Tool Kit Intrinsics and Xlib. Technically speaking, the GUI inter-
face class hierarchy based on object oriented programming is as in Figure 4.1.

In Figure 4.1 the "inputButton" controls the user input interface; the
"outputButton" takes care of the output of optimization results and statistics; the
"generateButton" generates a test problem; the "optimizeButton" activates the column
generation column elimination program to solve the problem; the mapBox Widget
Class allows a programmer to draw geographic maps in an X window. It is designed
to give the application programmer the ability to work entirely in world (latitude,
longitude) coordinates and frees him/her from thinking about the projection, scale, and
display of the data. It has a 'zoom box' built in. The user can drag out a zoom box with
the first mouse button (changeable through added translations). He/she can then zoom
by clicking the first button within the zoom box, or cancel it by clicking outside its
boundaries.
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Figure 4.1 X GUI Interface Class Hierarchy

4.2 SYSTEM DEMONSTRATION

An example of the optimal requirement studies (the backward problem) is given in this
sub-section. Five additional examples are given in [6] as demonstrations of the NETO and
the SP-CGCE algorithm. In [6], the first example is a backward requirement analysis type
problem; the second is a forward capability analysis-type problem; the third is a full-load
problem; the fourth is a multidepot problem; and the last is a split type of problem.

4.2.1 EXAMPLE: OPTIMAL REQUIREMENTS STUDIES (BACKWARD
PROBLEM)

In this example the problem is to find how many aircraft are necessary to move cargoes
to the specified destination, while satisfying the closure schedule specified by the TPFDD.
An illustration is provided of how the system and the algorithm function.

4.2.1.1 INPUT AND PREPROCESSING
Raw input information stored in the database system will first be preprocessed by the

tasks listed previously in this report, such as by merging files and aggregating records into a
correct and efficient form. Here we start from a regular and simplified TPFDD format and
proceed to the optimization process described below.

4.2.1.2 OPTIMIZATION
Operations Network: The operations network constitutes the original mobility operation

information represented in a form of transportation network consisting of all relevant data,
such as air bases, seaports, air routes, sea routes, onloads, offloads, enroutes, cargoes, trans-
portation vehicles, weather, scenarios, movement requirements, logistics factors, etc. The
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operations network in this example is outlined in terms of cargoes, transportation resource
and operation scenarios:

Cargo: Cargo information described by the simplified TPFDD as movement requirement is
specified in Table 4-1. For a graphical representation of the TPFDD, please refer to Figure 4-2.

Table 4-1 TPFDD for the Backward Problem

APOE APOD EAD(min) LAD(min) TONNAGE

ALLEGHENY CO MYRTLE BEACH AFB 303 1685 256

HAWTHORNE MUNI GADSDEN MUNI AFB 144 1825 267

DULUTH INT MYRTLE BEACH AFB 636 2851 138

Transportation Resource:
" Aircraft Capacity: 500 tons
* Aircraft Speed: 120 mph.
* Aircraft Berth:

* Starting Depot: SAN FRANCISCO INTL.
* Returning Depot: SAN FRANCISCO INTL.

For simplicity, cargo loading/unloading time is converted into vehicle speed thus the
service time s is set to zero. Aircraft capacities and cargoes are modeled here with only one
dimension (weight); other dimensions such as load size and passenger/cargo type can also
be incorporated.

De:ot: LAD 63 5m-a
Sa TTons: 138 v c

EA" F 14m]in X Tom. 3ig256

LAP825 and 2851min for Dulu

Figure 4.2 Graphical Representation of the TPFDD in the Backward Problem
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Table 4-2 Operations Network Information

a. Distance Among Bases: Great Circle Distance
AIR BASES SAN FRANC ALLEGHE HAWTHOR DULUT MYRTLE GADSDEN

ISCO INT NYCO NE MUNI H INT BEACH AFB MUNI AFB

SAN FRANCISCO INT 0 2282 347 1657 2451 2038

ALLEGHENYCO 2282 0 2165 764 473 581

HAWTHORNE MUNI 347 2165 0 1632 2269 1842

DULUTH INT 1657 764 1632 0 1151 947

MYRTLE BEACH AFB 2451 473 2269 1151 0 431

GADSDEN MUNI AFB 2038 581 1842 947 431 0

b. Flying Time Among Bases: Using t[ij]= CDrij/AifcraftSpeed
AIR BASES SAN FRANC ALLEGHE HAWTHOR DULUT MYRTLE GADSDEN

ISCO INT NYCO NE MUNI H INT BEACH AFB MUNI AFB

SAN FRANCISCO INT 0 1141 173 828 1270 1019

ALLEGHENYCO 1141 0 1082 382 236 290

HAWTHORNE MUNI 173 1082 0 816 1134 921

DULUTH INT 828 382 816 0 575 473

MYRTLE BEACH AFB 1270 NA 1134 575 0 215
GADSDEN MUNI AFB 1019 290 921 473 215 0

Operation Scenarios:
" Operation Time: Starting at 00.00 hr, ending at 48:00 hr (i.e. Time Duration - 48.00 hrs)
" Infrastructure:

" Availability of Aircraft: to be decided optimally
" Transportation Network /Operations Network: Table 4-2.

Network Construction & Optimization Network: The network construction trans-
forms the above operations network into the optimization network, taking into considera-
tion factors such as routes, enroutes, cargoes, fuel and other information in association with
the operations network. TPFDD and transportation network information is transformed
into the labeled digraph G(NA). After the network construction process, the graph and
labels information are shown in Table 4-3.
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Table 4-3. Optimization Network Information

a. Node N, labels a[i], b[i] and d[i] in G(N,A)
Node N 0 1 2 3 -1 -2 -3 7
AirBase SANFR ALLEGH HAWVTHO DULUTH MYRTLE GADSDE MYRTLE SANFR

afi] 0 303 144 636 0 0 0 0

b[i] 2880 2880 2880 2880 1685 1825 2851 2880

d~i] 0 256 267 138 -256 -267 -138 0

b. Cost ci for G(N, A)

Node- 0 1 2 3 -1 -2 -3 7

0 0 3722 1787 3097 NA NA NA NA

1 NA 0 2165 764 473 581 473 NA

2 NA 2165 0 1632 2269 1842 2269 NA

3 NA 764 1632 0 1151 947 1151 NA

-1 NA NA 2269 1151 0 431 0 2451

-2 NA 581 NA 947 431 0 431 2038

-3 NA 473 2269 NA 0 431 0 2451

7 NA NA NA NA NA NA NA. 0

c: Flying Time tj for G(N, A)

Node 0 1 2 3 -1 -2 -3 7

0 0 1141 173 828 NA NA NA NA

1 NA 0 1082 382 236 290 236 NA

2 NA 1082 0 816 1134 921 1134 NA

3 NA 382 816 0 575 473 575 NA

-1 NA NA 1134 575 0 215 0 1225

-2 NA 290 NA 473 215 0 215 1019

-3 NA 236 1134 NA 0 215 0 1225

7 NA NA NA NA NA NA NA 0

Please note that -i is equivalent to n+i. So either (in+i) or (i,-i) denote the same pickup-
delivery pair. NA means not applicable.

To construct the optimization network, two tasks arise: building up the digraph topolo-
gy G, and computing the labels. For simplicity, we take the direct physical route (i,) as the
arc (i,) of G(NA). With the arcs available, other parts of the network can be built very easily.
In particular, the cost of arc (i,) is defined as

= fGCD(i,j), if i = , and K=1441, here K represents the "fixed cost" of[K + GCD(ij), if i=0

utilizing a vehicle. In reality, arc construction is a complicated procedure which can be done
in various ways according to the actual operational situation. Information concerning crew
scheduling, traffic congestion, aircraft mechanical limitations, weather situation, closed air
bases, hostile regions and so forth might all be included in the optimization network con-
struction process. For example, to construct the arc from a pickup node i c P' to a delivery
node n+i c P-, we may select the shortest path P with the maximum length of any segment
in path P not exceeding certain number in the operations network, which may mean that a
certain type of aircraft can make a sustained flight with supported available refueling along
the route.
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Network Reduction & Reduced Optimization Network: The above optimization net-
work can be further reconfigured by tightening some time windows and some inadmissible
arcs through the process of network reduction, which reduces the size of the problem. There
are nine rules for time window tightening and inadmissible arc elimination (cf. Chapter 4 of
[6]); these rules identify infeasible/inadmissible arcs and reduce the network size. Table 4-4
shows the result of network reduction.

Table 4-4 Reduced Optimization Network Information

a: Node, labels afi], b[i] and d[
Node 0 1 2 3 -1 -2 -3 7

Air Base SAN FR ALLEGH HAWTHO DULUTH MYRTLE GADSDE MYRTLE SAN FR
a[i] 0 1141 173 828 1377 1094 1403 0
b[i] 2880 1419 904 1080 1655 1825 1655 2880

d[i] 0 256 267 138 -256 -267 -138 0

b. Cost c, for G(N,A)

Node S 1 2 3 -1 -2 -3 T

S 0 3722 1787 3097 NA NA NA NA

1 NA 0 - - 473 581 473 NA

2 NA 2165 0 1632 - 1842 - NA

3 NA 764 - 0 - 947 1151 NA

-1 NA NA - 0 431 0 2451

-2 NA 581 NA 431 0 431 2038

-3 NA - NA 0 431 0 2451
T NA NA NA NA NA NA NA 0

Note: "-" entry in above table means the arc is eliminated.

Comparing 4-3(a) with 4-4(a), it can be seen that 6 out of 8 time windows are tightened,
e.g. the original time-window in Table 4-3(a) for node 1 was [303, 2880], in the reduced ver-
sion it has been tightened to [1141, 1419]; Comparing 4-3(b) with 4-4(b), it can be seen that 11
out of 33 arcs in the original optimization network are eliminated, e.g. in the entry for the arc
connecting node 1 to node 2 has been eliminated. These window tightening and arc reduc-
tions result in a reduced network with less computational complexity.

PDPTW & SP-CGCE OPTIMIZATION:
With G(N,A) available, the SP formulation for the PDPTW problem can be carried out as dis-

cussed in Appendix B. The SP formulation is an implicit one, because it offers the structure, but
does not explicitly express the parameter values. These values, such as the cost coefficients and
columns, will be generated along with the solution of the formulation. The Column Generation
part of the SP-CGCE algorithm solves the LP relaxation of the SP formulation to LP optimal after
generating 4 columns (Table 4-5). During the first iteration of column generation, the column
which is generated corresponds to the feasible route of (0,3,1,-3,-1,7) (also see Table 4-3):

1) the vehicle leaves its home base at node 0 (referring to SAN FR),
2) picks up cargo at node 3 (referring to DULUTH, picking up 138 tons there),
3) the vehicle then goes to node 1 (referring to ALLEGH, picking up 256 tons),
4) the vehicle delivers the cargo from DULUTH (labeled node "3") to node "-3" which

is the drop-off at MYRTLE,
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5) the vehicle then delivers the cargo from ALLEGH (labeled node "1") to node "-1"

which here also refers to MYRTLE.
The reduced cost corresponding to this column/route is -6560. By column generation

technique, we know it is the minimum reduced cost among all other columns which are not
in the base of the simplex algorithm. Since this is a negative value, the LP solution is not yet
an optimum one; therefore, more column generations are needed. As shown in Table 4-5,
after the 4th column generation iteration, the optimal solution is obtained.

Table 4-5 Column Generation Process

Column min Reduced Cost Corresponding Route LP Optimal? Add This Column?
Generations

1st -6560 (0,3,l,-3,-l.7) N Y
2nd -5179 (0,2,-2,l,-1,7) N Y

3rd -3946 (0,2,3,-3,-2,7) N Y

4th 0 All 7 Feasible Routes Y N

The Column Elimination part of the algorithm solves the SF problem to integer optimal
using 5 out 7 total feasible columns/routes (Table 4-6), i.e. two columns are eliminated.

Table 4-6 Column Elimination Process

Route Reduced Zupper -Zlower Eliminated? The Path
Cost

1 3206 1973 y 0(T:0), I1(T: 1141), -1 (T: 1377), 7(T:26 02)
2 1973 1973 N 0(T.0), 2(T:173), -2(T:1094), 7(T:211 3)
3 3354 1973 Y 0(T:0), 3(T: 828), -3(T:1403), 7(T:262 8)
4 500000001 1973 1 N* 0(T:0O), 2(T:173), -2(T:1094), 1(T :1384), -1(T:1l620), 7(T:2845)
5 0 1973 N 0(T:0), 3(T:828), 1(T:1210), -3(T:1446.-1(T:1446), 7(T:2671)
6 0 1973 N 0(T:0), 2(T:173), 3(T:989), -3(T:1564), -2(T:1779), 7(T:2798)
7 0 1973 N 0(T:0), 3(T:828), l(T:1210), -l(T:1446), -3 (T:1446), 7(T:2671)
8 0(T:0), 2(T:173), 3(T:989), I(T.1371), -1(T.1607), -3(T:1607), -

2(T.1822), 7(T:2841)

9 not PD PTW feasible 0(T:0), 2(T:173), 1(T:1255), -1(T:l491), -2(T:1706), 7(T:2725)
10 0(T:0), 2(T: 173), 3(T.989), 1(T:1371), -3(T:1l607), -1(T:1607), -

___ __9 _______________ 2(T: 1822), 7(T:2841)

*The 50000000 value is an internal flag of the implementation for code optimization

The optimization statistics and optimal solution are shown in Table 4-7, from which we
know that the minimum number of vehicles used is 2 and the optimal routes and schedule
are 0(T: 0), 2(T:173), -2(T:1094), 7(T:2113) and 0(T: 0), 3(T: 828), 1(T:1210), -1(T:1446),
-3(T.1446), 7(T:2671).
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Table 4-7 Optimization Results

a. Optimization Statistics
0ptimal Values Vehicles Needed Pickup-Deliver Pair Nodes Arcs F_Arcs

12452 I 2 3 I 7 I 33 I 22
FRts Colum~ens LPOptimal Zupper RtsElimd Ttotal

7 4 10479 12452 2 0

b. Optimal Routing & Scheduling
Binary Route Cost Routing & Scheduling Information Format: Node(T:ArivalDeparture Time)

VariableI

X1 5667 0(T: 0), 2(T:173), -2(T:1094), 7(T:2113)
x6 6785 10(T: 0), 3(T: 828), 1(T:1210), -1(T:1446), -3(T:1446), 7(T:2671)

4.2.1.3 POSTPROCESSING AND OUTPUT
Depending on the situation, various postprocessings could be done and user-friendly

output could be generated. Here, we will give the GUI display of the optimal routes in
Figure 4.3, the throughput in Figure 4.4, and the Vehicle-in-Use Information in Figure 4.5.

Figure 4.3 Optimal Routing in the Requirements Studies Example
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Figure 4.4 Throughput
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Figure 4.4 Vehicles-in-Use

Figure 4.5 Vehicles-in-Use

5. DISCUSSION OF RELATED ISSUES AND FUTURE WORK
Although the focus of this report has been our solution to the requirement studies prob-

lem, the above implemented model and solution scheme is powerful, flexible and extendible
in dealing with many other real world issues. Here we mention, with some modification,
those problems addressed by this approach and additional issues for further work.

1) Vehicle Numbers: Consideration of the number of vehicles is easily incorporated in this
approach. For the minimum number of vehicles problem, what is needed is to take.

=K ifi=0. For problems that are concerned with an exact number m of vehicles,cii = ifi O"

the constraint Y x, = m must be included. For problems with a maximum number m
rea

vehicles the constraint: Ix,, <_ m must be included.
rea

Page 98 Military Operations Research, Winter 1996



MODELING AND OPTIMIZATION OF MOBILITY ANALYSIS

2) Multi-depot, Nonhomogenous-vehicle: This approach can easily be extended to a
multi-depot, nonhomogenous-vehicle situation in which the feasible routes would be
obtained by applying the Constrained Shortest Path Algorithm to different depots and
types of vehicles. The computation time/complexity increases linearly

3) General VRP Problems: This scheme can solve general VRP problems, pickup only
problem, delivery only problem, split, full load, with or without time windows. The
only major modification is the constrained shortest path problem.

4) Forward Problem: The approach can also address the aforementioned forward prob-
lem. The forward problem can be formulated similarly by incorporating the penalty
term T,.i-a, i e P' into the cost coefficient c,.

5) Soft Time Windows: The approach can also address the so called soft time window
problem. The penalties will be incorporated into the cost coefficient c, to include a
route with violated time windows as a feasible route.

6) Larger Problems: The algorithm can be tailored to solve even larger problems by sac-
rificing optimality and settling for a sub-optimal solution. One way of doing this is to
first divide the original problem into subproblems using the concept of clustering,
and then use this scheme to solve each subproblem to optimality. It is also possible to
not require optimality in the constrained shortest path and column elimination algo-
rithm. From another point of view, a semantic control paradigm can be employed to
deal with larger problems in which the higher and intelligent layer of the system will
identify the problem situation and transfer control accordingly to the lower and actu-
ating layer of the system which in our case would be the PDPTW algorithm.

7) Full Load and Split Problem: By adding the full load requirement into the con-
strained shortest path problem, the algorithm solves the full load problem; by assign-
ing different nodes to the split loads, it solves the split problem. Also, the algorithm is
easily adapted to deal with regular routing problems, pickup problems, delivery
problems and TSP problems. Of course, it performs better with problems which are
more tightly constrained.

The objective function is flexible, i.e. various objective functions can be included. As
mentioned above, an objective function to address the forward problem, the backward prob-
lem, and soft time windows can be included in the scheme. Other factors, such as travel dis-
tance, travel time, vehicle utilization considerations etc., can also be easily incorporated.

The mobility system is a large-scale and complicated system; in order to address more
realistic and larger problems in mobility analysis and other large scale transportation sys-
tems, much more research is needed in addition to the work presented in this report. The
following outlines several open problems that need to be addressed:

1) Crew Scheduling: There are regulations/constraints on the working hours of crew
members. The crew scheduling issues can also be incorporated into the scheme. One
way is to do (vehicle) routing first and (crew) scheduling second, in which case crew
scheduling will take place after the vehicle routes are settled. Crew scheduling could
also be done along with feasible route generation, in which case each feasible route
needs to meet crew scheduling constraints.

2) More efficient parallel algorithm development for the constrained SPP problem: The
column generation-column elimination algorithm is efficient in finding the integer
optimal when the relaxed LP optimal is achieved. Unfortunately, solving the con-
strained SPP problem for the column generation process to obtain the LP optimal is
very time-consuming and computer memory-intensive. It is the major bottleneck of
the algorithm; therefore a more efficient algorithm for the constrained SPP problem is
desired. In recognition of the ever-increasing use of parallel computing, parallel algo-
rithm development may be a worthwhile pursuit. The use of parallel algorithms will
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be achievable in the near future since the process for solving the constrained SPP
problem is based on dynamic programming and has very strong parallelism.

3) Vehicle Concurrence Issues: Vehicles might compete for common resources such as
routes, crew members, air fields etc., which could affect operations. The effects of one
vehicle on another make the system a time-dependent and vehicle-dependent
dynamic system; these issues are not considered here. The set-partitioning formula-
tion, column-generation solution approach might be inherently weak in modeling
these factors. One possible way of handling this is by a route-first and concurrence-
check-second approach. Since the optimal solution is often not unique, the check can
be first conducted for all optimal solutions. If none satisfies the concurrence check
criteria, certain modifications need to be performed.

4) Nonlinear Loading Algorithm: In this report, a multidimensional linear loading algo-
rithm is used (constraint B-5 for load progression in the formulation given in
Appendix B). In more complicated cases, nonlinear loading may be involved, and
issues concerning nonlinear loading algorithms coupled with the optimality analysis
should be explored. Generally, any loading algorithm could replace the existing load-
ing in the NETO as long as it can be incorporated in the constrained shortest path
problem.

5) Dynamic Routing and Scheduling: The situation studied in this paper is basically a static
routing and scheduling problem with time windows and capacity constraints. The
movement requirement is known in advance. In some situations, the movement require-
ment is dynamic and the routing and scheduling should be performed continuously.

6) Probabilistic Considerations: In this report we have assumed that the parameters of
the operation, including the network, resources, etc. are all deterministic. But in real
situations, various uncertainties could be involved in many aspects of the problem;
therefore probabilistic studies are useful in addressing more realistic scenarios.

6. CONCLUSION
This report is based on a doctoral dissertation by the first author [6]; it is the first attempt

to use column generation-column elimination scheme to solve VRP problems in general and
VRPTW and PDPTW problems in particular; it is also the first attempt to model and solve
the mobility analysis system problems using network optimization with time window
constrained routing and scheduling.

The new model (NETO) not only offers optimal solutions but also solves both the for-
ward problem and the backward problem. Above all, it is flexible and can be extended to
include many additional practical and operational constraints and considerations. The
SP-CGCE algorithm is an efficient and competitive approach to solve practical vehicle rout-
ing and scheduling problems. The computational results presented briefly in section 3.3 of
this report indicate robust performance for the algorithm. All these characteristics discussed
above make NETO, with the SP-CGCE algorithm powerful, flexible and practical.

In summary a new mobility analysis model named NETO [6] is proposed to address
various limitations of the existing ones. The new model consists of a network optimization
engine with time window constrained routing and scheduling that is based on integer and
combinatorial optimization methodology, and an analysis system with a management infor-
mation system built upon RDBMS and multimedia technology It is our belief that NETO
with the SP-CGCE algorithm can be, should be and will be utilized to solve practical mobili-
ty analysis problems as well as other transportation system related problems.
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APPENDIX A: NOTATIONS AND DEFINITIONS
AMC: Air Mobility Command
APOE: Aerial Port of Embarkation
APOD: Aerial Port of Debarkation
CINC: Commander-in-chief
COA: Courses of Action
CONUS: Continental United States
EAD: Earliest Available Date
FLOGEN: Flow Generator
GCD: Great Circle Distance
GUI: Graphical User Interface
IP: Integer Programming
LAD: Latest Arrival Date
LP: Linear Programming
MASS: Mobility Analysis Support System
MASS: Mobility Analysis Simulation System
MIDAS: Model for Intertheater Deployment By Air and Sea
MIP: Mixed Integer Programming
MIS Management Information System
MSC: Military Sealift Command
NETO: Network Optimization Mobility Analysis System
OSD: Office of the Secretary of Defense
PDPTW: Pickup and Delivery Problem with Time Window Constraint
RDBMS Relational Database Management System
RIMS: Revised Intertheater Mobility Study
SP-CGCE: Set-partitioning Formulation, Column Generation Column Elimination
SPP: Shortest Path Problem
TPFDD: Time Phased Force Deployment Data
TSP: Traveling Salesman Problem
VRP: Vehicle Routing and Scheduling Problem
VRPTW: Vehicle Routing and Scheduling Problem with Time Window Constraint

RI: n dimensional real vector space
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Zn a set of non-negative integral n-dimensional vector space

B+ :a set of non-negative binary n-dimensional vector space

P+: pickup node set, P+ ={1,2,..., n}. The corresponding delivery node to i P+ is

n + i, also referred to as -i

P- : delivery node set, P ={n + 1,n + 2,...,2n} =[-I, -2, ... -n}

P :operation node set, P P+ P-. P includes all pickup and delivery nodes

S :Starting node set from which vehicles departure. For single depot case, S = {O}. S is

also used for the space {0j1}

T: Terminating node set to which vehicles return. For single depot case T = {2n + 1}

N: all nodes of the optimization network, N = S U P u T =(O, 1 ... n, n+1. 2n,

2N=1)

A: all arcs of the optimization network, A = S x P tu P+ x P U P x T

G(N, A): the original underlying graph of the optimization network

P,: a feasible route in G(N, A)

K2: or 92(N, A), the set of all feasible routes in G(N, A). 2 {pr}

1 ': the cardinality of 2

X B : the basic variables in the simplex method

XN: the non-basic variables

cB: the cost coefficient corresponding to XB

cN: the coefficient corresponding to XN

B: the basis in the simplex method

N: the non-basic columns.

QB: i.e. {pr:Sr B}, the set of the feasible routes that correspond to the columns in the

'feasible base B

8,: column coefficient of the set partitioning formulation, corresponding to feasible route

1 ifnode i is noton router
pr' where 8 ir ifnofde iionrue iPr {slpse 2}

0O if feasible route r is not selected in the solution
x: xr 1  if feasible route r is selected in the solution r = {1 Pr E 2}

binary variable
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SP: the original master problem with set partition formulation

RSP: the linear relaxation of SP

ASP: the augmented set partition master problem

RASP: the linear relaxation of ASP

X: the optimal solution variable for RSP or RASP

Xi : a feasible solution for SP(integer solution)

Xi :x, where (i, j) E A is the vehicle flow variables of the feasible route P r r = .

JI if feasible route pr goes directly from i toj
x = if feasible route pr. does not go directly form i toj

Ci.: the cost of arc (i,j)

Cij: artificial cost of arc (i, j) for the shortest path problem

Cr: the cost of route P r : Cr = I ¢UXU
(ij)&A

Cr: reduced cost Cr = Cr -76 , where Ir is the dual variables vector/simplex multiplier

S: the original problem space, S = {0, }111. S is also used for the starting nodes

SR: i.e. SRSP, or SRASp, the problem space of RSP or RASP, SR e R4 and is the linear

relaxation of S

di: load vector(volume, weight...) of cargo i at node i

[ai, b 1]: pickup time window at node i for movement/cargo i

[a0 , bo ]: time window for vehicle leaving the depot S

[a 2n+l, b2.+1]: time window for vehicle returning to the depot T

D : capacity of vehicle(load weight limit, volume,...)

tij "_ travel time from node i E N to node j e N

Si : service time(pickup time or delivery time) at node i e N

Y: the total load on the vehicle just after it leaves node i e N

Ti: time of start service at node i e N

TO:  arrival time at node i or time vehicle leaves the depot S

T2n+i: time vehicle returns to the depot T

RT: feasible route defining formulation

Military Operations Research, Winter 1996 Page 103



MODELING AND OPTIMIZATION OF MOBILITY ANALYSIS

RTL columns to be generated each time for the column generation process

5-(j): the set of nodes that are connected to node j

pa (j): the a h route in all routes that starts at S and ends at j with k arcs

pk(j): the set of all routes that start at S and end at j with k arcs, i.e. Pk(j) =U P(j)
a

hi (j): the cost of route p (j)

T k (j): arrival time atnode j of route p(j)

Y, (j): vehicle load at node j along route p (j)

APPENDIX B: SET PARTITIONING FORMULATION OF THE PDPTW
B.1 Route Defining Formulation
The PDPTW problem is formulated as a set-partitioning model; the formulation is based on
the concept of feasible routes:
A feasible route p, in G(NA) is a non-cyclic path that originates from S and terminates at T,
while satisfying pairing constraints, precedence constraints, capacity constraints and time
window constraints. Introducing binary route flow variable xi as

f 1 if the feasible router goes directly from i to j(j,]) A.{ [0 if the feasible route r does not go directly form ito j

Then pr can be defined as follows:

I - zxj,. i = 0, i e P (B-i) (pairing constraints)
jeN jeN

Ti + si + ti.,i <_ T.+i, i E P+) (B-2) (precedence constraints)

xij I = T + si + tij 5 Tj, ij P 1
Route: x0j = 1 = To + to < Tj, j r + P (B-3) (time progression)

xi,2.+l = 1 =* Ti + Si + ti,2. 1 < T2.1,ij P

ai :< T < bi" i P

ao < To < b0  (3-4) (time window constraints)
a,,+l < T2+1 < h,,+l

x, = == Y* i +dj = Y , iCP, j= P+

x1j = l 1lj -dj = Yj, i 6 P, j E P- (3-5) (load progression)

Xj= = Y0 +d, = Y, j P+

0 < Yi < D, i E P+ (B-6) (capacity constraint)

In the above formulation, equation (B-i) ensures that both the pickup node i and its corre-
ponding delivery node n+i are on the same route Pr; (B-2) ensures that on the route P' pick-
up is performed before delivery; (B-3) represents the time progression in the network, while
(B-4) are time window constraints. Contraints (B-5) express the compatibility requirements
between routes and vehicle loads, while constraints (B-6) are the capacity constraints.
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B-2 Set Partitioning Formulation:
In set-partitioning formulation, the column coefficients 6, in the constraint matrix are
defined by the feasible route Pr in G(NA) in the following way:

B-2 Set Partitioning Formulation:
In set-partitioning formulation, the column coefficients 8r in the constraint matrix are defined by the

feasible route pr in G(N,A) in the following way:

[ 5irli where Sir = 0  ifnodeiisnotonroutepr iEP+"
ri if node iis onroutePr

Next let's introduce the binary decision variable Xr:

(0 if the feasible route Pr is not selected in the solution
1 if the feasible route Pr is selected in the solution

and the cost coefficient cr associated with xr or within the feasible route Pr. Note that x, is defined
through Pr' and Pr is defined through x,. Then we are ready to give the set-partitioning formulation for

the PDPTW problem:

z = min I CrXr
reD

SP: st. IsxrX = l , iEP+
reQ

xr r={0,1}, r e ). ie. X e S = {0,1}Iq

In the above SP formulation, the column coefficients 8r and the cost coefficient cr are not explicitly
available. They need to be obtained through corresponding feasible route Pr' which were defined
previously. A flexible objective function can be obtained by varying the exact formulation of the cr's. In

(K if i = 0
particular to solve the requirement studies problem, if c i= K ifi =0 then the objective is to

[Oif i #O
minimize the number of vehicles used. In general, the number of feasible routes Pr and the number of
columns 6, inini is huge, making it computationally prohibitive to enumerate all feasible
routes/columns and solve the SP problem to integer optimality.
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2 This work was supported in part by AFOSR under grant number 890158.
3 A complete list of terminology, definitions, notation, and symbols is given in the

Appendix A at the end of this report.
The networks were trained and validated on a declassified TPFDD file from

Operation Just Cause in Panama.
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